John R Hutchinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634468/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Inverse Krogh Principle: All Organisms Are Worthy of Study. Physiological and Biochemical Zoology, 2023, 96, 1-16.	1.5	6
2	Femoral specializations to locomotor habits in early archosauriforms. Journal of Anatomy, 2022, 240, 867-892.	1.5	12
3	A Guide to Inverse Kinematic Marker-Guided Rotoscoping Using IK Solvers. Integrative Organismal Biology, 2022, 4, obac002.	1.8	1
4	A proposed standard for quantifying <scp>3â€D</scp> hindlimb joint poses in living and extinct archosaurs. Journal of Anatomy, 2022, 241, 101-118.	1.5	17
5	Three-dimensional polygonal muscle modelling and line of action estimation in living and extinct taxa. Scientific Reports, 2022, 12, 3358.	3.3	11
6	Comparison of the armâ€lowering performance between <i>Gorilla</i> and <i>Homo</i> through musculoskeletal modeling. American Journal of Biological Anthropology, 2022, 178, 399-416.	1.1	1
7	Walking—and Running and Jumping—with Dinosaurs and their Cousins, Viewed Through the Lens of Evolutionary Biomechanics. Integrative and Comparative Biology, 2022, 62, 1281-1305.	2.0	10
8	Multi-Joint Analysis of Pose Viability Supports the Possibility of Salamander-Like Hindlimb Configurations in the Permian Tetrapod <i>Eryops megacephalus</i> . Integrative and Comparative Biology, 2022, 62, 139-151.	2.0	8
9	Low effective mechanical advantage of giraffes' limbs during walking reveals trade-off between limb length and locomotor performance. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
10	Anatomy, ontogeny, and evolution of the archosaurian respiratory system: A case study on <i>Alligator mississippiensis</i> and <i>Struthio camelus</i> . Journal of Anatomy, 2021, 238, 845-873.	1.5	15
11	How to build a dinosaur: Musculoskeletal modeling and simulation of locomotor biomechanics in extinct animals. Paleobiology, 2021, 47, 1-38.	2.0	66
12	Coordination of lateral body bending and leg movements for sprawled posture quadrupedal locomotion. International Journal of Robotics Research, 2021, 40, 747-763.	8.5	15
13	Exploring the functional morphology of the <i>Gorilla</i> shoulder through musculoskeletal modelling. Journal of Anatomy, 2021, 239, 207-227.	1.5	8
14	Musculoskeletal modelling of the Nile crocodile (<i>Crocodylus niloticus</i>) hindlimb: Effects of limb posture on leverage during terrestrial locomotion. Journal of Anatomy, 2021, 239, 424-444.	1.5	22
15	The evolution of pelvic limb muscle moment arms in bird-line archosaurs. Science Advances, 2021, 7, .	10.3	31
16	Computational modelling of muscle fibre operating ranges in the hindlimb of a small ground bird (Eudromia elegans), with implications for modelling locomotion in extinct species. PLoS Computational Biology, 2021, 17, e1008843.	3.2	24
17	Limb myology and muscle architecture of the Indian rhinoceros <i>Rhinoceros unicornis</i> and the white rhinoceros <i>Ceratotherium simum</i> (Mammalia: Rhinocerotidae). PeerJ, 2021, 9, e11314.	2.0	12
18	The evolutionary biomechanics of locomotor function in giant land animals. Journal of Experimental Biology, 2021, 224, .	1.7	18

#	Article	IF	CITATIONS
19	Predictive simulations of running gait reveal a critical dynamic role for the tail in bipedal dinosaur locomotion. Science Advances, 2021, 7, eabi7348.	10.3	20
20	Predictive Simulations of Musculoskeletal Function and Jumping Performance in a Generalized Bird. Integrative Organismal Biology, 2021, 3, obab006.	1.8	8
21	Evolution of forelimb musculoskeletal function across the fish-to-tetrapod transition. Science Advances, 2021, 7, .	10.3	32
22	Estimating Gaits of an Ancient Crocodile-Line Archosaur Through Trajectory Optimization, With Comparison to Fossil Trackways. Frontiers in Bioengineering and Biotechnology, 2021, 9, 800311.	4.1	2
23	Evolution of Hindlimb Muscle Anatomy Across the Tetrapod Waterâ€toâ€Land Transition, Including Comparisons With Forelimb Anatomy. Anatomical Record, 2020, 303, 218-234.	1.4	20
24	Can skeletal surface area predict in vivo foot surface area?. Journal of Anatomy, 2020, 236, 72-84.	1.5	3
25	Relationships of mass properties and body proportions to locomotor habit in terrestrial Archosauria. Paleobiology, 2020, 46, 550-568.	2.0	12
26	Patterns of Limb and Epaxial Muscle Activity During Walking in the Fire Salamander, <i>Salamandra salamandra</i> . Integrative Organismal Biology, 2020, 2, obaa015.	1.8	15
27	Arm waving in stylophoran echinoderms: three-dimensional mobility analysis illuminates cornute locomotion. Royal Society Open Science, 2020, 7, 200191.	2.4	11
28	3D hindlimb joint mobility of the stem-archosaur Euparkeria capensis with implications for postural evolution within Archosauria. Scientific Reports, 2020, 10, 15357.	3.3	37
29	Appendicular Muscle Physiology and Biomechanics in <i>Crocodylus niloticus</i> . Integrative Organismal Biology, 2020, 2, obaa038.	1.8	2
30	More than one way to be a giant: Convergence and disparity in the hip joints of saurischian dinosaurs. Evolution; International Journal of Organic Evolution, 2020, 74, 1654-1681.	2.3	12
31	Three-dimensional visualization as a tool for interpreting locomotion strategies in ophiuroids from the Devonian Hunsrück Slate. Royal Society Open Science, 2020, 7, 201380.	2.4	4
32	Evolution of the patella and patelloid in marsupial mammals. PeerJ, 2020, 8, e9760.	2.0	2
33	The locomotor kinematics and ground reaction forces of walking giraffes. Journal of Experimental Biology, 2019, 222, .	1.7	32
34	Bony lesions in early tetrapods and the evolution of mineralized tissue repair. Paleobiology, 2019, 45, 676-697.	2.0	9
35	Morphological diversification of biomechanical traits: mustelid locomotor specializations and the macroevolution of long bone cross-sectional morphology. BMC Evolutionary Biology, 2019, 19, 37.	3.2	30
36	Evolutionary parallelisms of pectoral and pelvic network-anatomy from fins to limbs. Science Advances, 2019, 5, eaau7459.	10.3	18

#	Article	IF	CITATIONS
37	Ontogenetic changes in the body plan of the sauropodomorph dinosaur Mussaurus patagonicus reveal shifts of locomotor stance during growth. Scientific Reports, 2019, 9, 7614.	3.3	48
38	Relating neuromuscular control to functional anatomy of limb muscles in extant archosaurs. Journal of Morphology, 2019, 280, 666-680.	1.2	17
39	Divergent evolution of terrestrial locomotor abilities in extant Crocodylia. Scientific Reports, 2019, 9, 19302.	3.3	28
40	Medetomidine–ketamine–sevoflurane anaesthesia in juvenile Nile crocodiles (Crocodylus niloticus) undergoing experimental surgery. Veterinary Anaesthesia and Analgesia, 2019, 46, 84-89.	0.6	6
41	Reverse-engineering the locomotion of a stem amniote. Nature, 2019, 565, 351-355.	27.8	165
42	Giant extinct caiman breaks constraint on the axial skeleton of extant crocodylians. ELife, 2019, 8, .	6.0	20
43	The running kinematics of free-roaming giraffes, measured using a low cost unmanned aerial vehicle (UAV). PeerJ, 2019, 7, e6312.	2.0	16
44	Foot pressure distribution in White Rhinoceroses (<i>Ceratotherium simum</i>) during walking. PeerJ, 2019, 7, e6881.	2.0	14
45	Anatomical network analysis of the musculoskeletal system reveals integration loss and parcellation boost during the fins-to-limbs transition. Evolution; International Journal of Organic Evolution, 2018, 72, 601-618.	2.3	15
46	Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia. Journal of Vertebrate Paleontology, 2018, 38, e1427593.	1.0	28
47	Energy allocation and behaviour in the growing broiler chicken. Scientific Reports, 2018, 8, 4562.	3.3	55
48	Reconstructing pectoral appendicular muscle anatomy in fossil fish and tetrapods over the finsâ€ŧoâ€limbs transition. Biological Reviews, 2018, 93, 1077-1107.	10.4	34
49	Limb bone scaling in hopping macropods and quadrupedal artiodactyls. Royal Society Open Science, 2018, 5, 180152.	2.4	21
50	Limb Kinematics, Kinetics and Muscle Dynamics During the Sit-to-Stand Transition in Greyhounds. Frontiers in Bioengineering and Biotechnology, 2018, 6, 162.	4.1	17
51	Cancellous bone and theropod dinosaur locomotion. Part I—an examination of cancellous bone architecture in the hindlimb bones of theropods. PeerJ, 2018, 6, e5778.	2.0	32
52	New insights into the morphology of the Carboniferous tetrapodCrassigyrinus scoticusfrom computed tomography. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 157-175.	0.3	6
53	Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny. Frontiers in Bioengineering and Biotechnology, 2018, 6, 140.	4.1	15
54	Integrating morphology and <i>inÂvivo</i> skeletal mobility with digital models to infer function in brittle star arms. Journal of Anatomy, 2018, 233, 696-714.	1.5	12

#	Article	IF	CITATIONS
55	Bone Apparent and Material Densities Examined by Cone Beam Computed Tomography and the Archimedes Technique: Comparison of the Two Methods and Their Results. Frontiers in Mechanical Engineering, 2018, 3, .	1.8	16
56	A Dynamic Simulation of Musculoskeletal Function in the Mouse Hindlimb During Trotting Locomotion. Frontiers in Bioengineering and Biotechnology, 2018, 6, 61.	4.1	33
57	The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs. PLoS ONE, 2018, 13, e0192172.	2.5	30
58	Cancellous bone and theropod dinosaur locomotion. Part III—Inferring posture and locomotor biomechanics in extinct theropods, and its evolution on the line to birds. PeerJ, 2018, 6, e5777.	2.0	33
59	Cancellous bone and theropod dinosaur locomotion. Part II—a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates. PeerJ, 2018, 6, e5779.	2.0	23
60	Limb proportions show developmental plasticity in response to embryo movement. Scientific Reports, 2017, 7, 41926.	3.3	1,989
61	Open data and digital morphology. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170194.	2.6	103
62	Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis. Nature Communications, 2017, 8, 14779.	12.8	18
63	Finite-element modelling of mechanobiological factors influencing sesamoid tissue morphology in the patellar tendon of an ostrich. Royal Society Open Science, 2017, 4, 170133.	2.4	7
64	Analysis of the moment arms and kinematics of ostrich (<i>Struthio camelus</i>) double patellar sesamoids. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327, 163-171.	1.9	14
65	Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds. Journal of the Royal Society Interface, 2017, 14, 20170276.	3.4	21
66	A quantitative evaluation of physical and digital approaches to centre of mass estimation. Journal of Anatomy, 2017, 231, 758-775.	1.5	14
67	Gearing effects of the patella (knee extensor muscle sesamoid) of the helmeted guineafowl during terrestrial locomotion. Journal of Zoology, 2017, 303, 178-187.	1.7	28
68	Regional differentiation of felidÂvertebral column evolution: a study of 3D shapeÂtrajectories. Organisms Diversity and Evolution, 2017, 17, 305-319.	1.6	28
69	Sesamoid bones in tuatara (<i>Sphenodon punctatus</i>) investigated with Xâ€ray microtomography, and implications for sesamoid evolution in Lepidosauria. Journal of Morphology, 2017, 278, 62-72.	1.2	22
70	Secondary osteons scale allometrically in mammalian humerus and femur. Royal Society Open Science, 2017, 4, 170431.	2.4	43
71	Forelimb muscle and joint actions in Archosauria: insights from <i>Crocodylus johnstoni</i> (Pseudosuchia) and <i>Mussaurus patagonicus</i> (Sauropodomorpha). PeerJ, 2017, 5, e3976.	2.0	61
72	Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans. Skeletal Muscle, 2017, 7, 26.	4.2	47

#	Article	IF	CITATIONS
73	Geometric Mechanics Applied to Tetrapod Locomotion on Granular Media. Lecture Notes in Computer Science, 2017, , 595-603.	1.3	8
74	Skeletal pathology and variable anatomy in elephant feet assessed using computed tomography. PeerJ, 2017, 5, e2877.	2.0	12
75	Evolution of the patellar sesamoid bone in mammals. PeerJ, 2017, 5, e3103.	2.0	39
76	Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb. PLoS ONE, 2016, 11, e0147669.	2.5	100
77	Biomechanical evolution of solid bones in large animals: a microanatomical investigation. Biological Journal of the Linnean Society, 2016, 117, 350-371.	1.6	44
78	Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Royal Society Open Science, 2016, 3, 150636.	2.4	51
79	Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization. Journal of the Royal Society Interface, 2016, 13, 20160035.	3.4	92
80	Foot pressure distributions during walking in African elephants (<i>Loxodonta africana</i>). Royal Society Open Science, 2016, 3, 160203.	2.4	28
81	Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model. Journal of Anatomy, 2016, 229, 514-535.	1.5	91
82	Anatomy, morphology and evolution of the patella in squamate lizards and tuatara (<i>Sphenodon) Tj ETQq0 0 C</i>) rgBT /Ov 1.5	erlock 10 Tf 5 17
83	The scaling of postcranial muscles in cats (Felidae) <scp>II</scp> : hindlimb and lumbosacral muscles. Journal of Anatomy, 2016, 229, 142-152.	1.5	22
84	The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles. Journal of Anatomy, 2016, 229, 128-141.	1.5	38
85	Cryptic complexity in felid vertebral evolution: shape differentiation and allometry of the axial skeleton. Zoological Journal of the Linnean Society, 2016, 178, 183-202.	2.3	42
86	The extinct, giant giraffid <i>Sivatherium giganteum</i> : skeletal reconstruction and body mass estimation. Biology Letters, 2016, 12, 20150940.	2.3	24
87	A preliminary case study of the effect of shoe-wearing on the biomechanics of a horse's foot. PeerJ, 2016, 4, e2164.	2.0	23
88	Big cat, small cat: reconstructing body size evolution in living and extinct Felidae. Journal of Evolutionary Biology, 2015, 28, 1516-1525.	1.7	23
89	Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs. Royal Society Open Science, 2015, 2, 150439.	2.4	51
90	RADIOGRAPHIC PROTOCOL AND NORMAL ANATOMY OF THE HIND FEET IN THE WHITE RHINOCEROS (<i>CERATOTHERIUM SIMUM</i>). Veterinary Radiology and Ultrasound, 2015, 56, 124-132.	0.9	5

#	Article	IF	CITATIONS
91	Musculoskeletal modelling of an ostrich (<i>Struthio camelus</i>) pelvic limb: influence of limb orientation on muscular capacity during locomotion. PeerJ, 2015, 3, e1001.	2.0	111
92	Comparative architectural properties of limb muscles in <scp>C</scp> rocodylidae and <scp>A</scp> lligatoridae and their relevance to divergent use of asymmetrical gaits in extant <scp>C</scp> rocodylia. Journal of Anatomy, 2014, 225, 569-582.	1.5	58
93	What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur. Journal of the Royal Society Interface, 2014, 11, 20140700.	3.4	2
94	Scaling of sensorimotor control in terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141911.	2.6	23
95	What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur. Journal of the Royal Society Interface, 2014, 11, 20140854.	3.4	2
96	An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (<i>Crocodylus niloticus</i>). Journal of Experimental Biology, 2014, 217, 758-768.	1.7	47
97	Dynasty of the plastic fish. Nature, 2014, 513, 37-38.	27.8	1
98	Anatomical and biomechanical traits of broiler chickens across ontogeny. Part I. Anatomy of the musculoskeletal respiratory apparatus and changes in organ size. PeerJ, 2014, 2, e432.	2.0	41
99	Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb. PeerJ, 2014, 2, e473.	2.0	35
100	Three-dimensional anatomy of the ostrich (<i>Struthio camelus</i>) knee joint. PeerJ, 2014, 2, e706.	2.0	21
101	Structure, ontogeny and evolution of the patellar tendon in emus (<i>Dromaius novaehollandiae</i>) and other palaeognath birds. PeerJ, 2014, 2, e711.	2.0	24
102	Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (<i>Dromaius novaehollandiae</i>). PeerJ, 2014, 2, e716.	2.0	34
103	The gait dynamics of the modern broiler chicken: A cautionary tale of selective breeding. Journal of Experimental Biology, 2013, 216, 3237-48.	1.7	41
104	Vertebral architecture in the earliest stem tetrapods. Nature, 2013, 494, 226-229.	27.8	51
105	Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs. Nature, 2013, 497, 104-107.	27.8	146
106	OSTEOPATHOLOGY IN THE FEET OF RHINOCEROSES: LESION TYPE AND DISTRIBUTION. Journal of Zoo and Wildlife Medicine, 2013, 44, 918-927.	0.6	20
107	Historical Perspectives on the Evolution of Tetrapodomorph Movement. Integrative and Comparative Biology, 2013, 53, 209-223.	2.0	57
108	Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria. PeerJ, 2013, 1, e60.	2.0	55

7

#	Article	IF	CITATIONS
109	A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking. PLoS ONE, 2013, 8, e79424.	2.5	47
110	Size-Related Changes in Foot Impact Mechanics in Hoofed Mammals. PLoS ONE, 2013, 8, e54784.	2.5	16
111	Shake a Tail Feather: The Evolution of the Theropod Tail into a Stiff Aerodynamic Surface. PLoS ONE, 2013, 8, e63115.	2.5	33
112	Statistical parametric mapping of the regional distribution and ontogenetic scaling of foot pressures during walking in Asian elephants (<i>Elephas maximus</i>). Journal of Experimental Biology, 2012, 215, 1584-1593.	1.7	36
113	What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur. Journal of the Royal Society Interface, 2012, 9, 351-361.	3.4	17
114	On the inference of function from structure using biomechanical modelling and simulation of extinct organisms. Biology Letters, 2012, 8, 115-118.	2.3	55
115	Wholeâ€bone scaling of the avian pelvic limb. Journal of Anatomy, 2012, 221, 21-29.	1.5	39
116	Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature, 2012, 486, 523-526.	27.8	171
117	Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2561-2570.	2.6	29
118	A growing size synthesis. Current Biology, 2012, 22, R309-R314.	3.9	3
119	3D Morphometric and Posture Study of Felid Scapulae Using Statistical Shape Modelling. PLoS ONE, 2012, 7, e34619.	2.5	13
120	Topsy-turvy locomotion: biomechanical specializations of the elbow in suspended quadrupeds reflect inverted gravitational constraints. Journal of Anatomy, 2011, 219, 176-191.	1.5	72
121	Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. Journal of Anatomy, 2011, 219, 502-514.	1.5	91
122	Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis. Journal of Anatomy, 2011, 219, 542-547.	1.5	0
123	Temporal gait parameters in the alpaca and the evolution of pacing and trotting locomotion in the Camelidae. Journal of Zoology, 2011, 283, 193-202.	1.7	21
124	From Flat Foot to Fat Foot: Structure, Ontogeny, Function, and Evolution of Elephant "Sixth Toes― Science, 2011, 334, 1699-1703.	12.6	55
125	<i>Tyrannosaurus rex</i> Redux: <i>Tyrannosaurus</i> Tail Portrayals. Anatomical Record, 2011, 294, 756-758.	1.4	7
126	Trabecular bone scales allometrically in mammals and birds. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3067-3073.	2.6	114

#	Article	IF	CITATIONS
127	A Computational Analysis of Limb and Body Dimensions in Tyrannosaurus rex with Implications for Locomotion, Ontogeny, and Growth. PLoS ONE, 2011, 6, e26037.	2.5	104
128	Functional specialization and ontogenetic scaling of limb anatomy in <i>Alligator mississippiensis</i> . Journal of Anatomy, 2010, 216, 423-445.	1.5	74
129	The effects of selective breeding on the architectural properties of the pelvic limb in broiler chickens: a comparative study across modern and ancestral populations. Journal of Anatomy, 2010, 217, 153-166.	1.5	45
130	Integration of biomechanical compliance, leverage, and power in elephant limbs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7078-7082.	7.1	53
131	Scaling of sensorimotor control in terrestrial mammals. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3563-3568.	2.6	87
132	Tyrannosaur Paleobiology: New Research on Ancient Exemplar Organisms. Science, 2010, 329, 1481-1485.	12.6	152
133	BoneJ: Free and extensible bone image analysis in ImageJ. Bone, 2010, 47, 1076-1079.	2.9	1,695
134	Two applications of 3D semi-landmark morphometrics implying different template designs: the theropod pelvis and the shrew skull. Comptes Rendus - Palevol, 2010, 9, 411-422.	0.2	18
135	Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry. PLoS ONE, 2009, 4, e4742.	2.5	53
136	Response: Of ideas, dichotomies, methods, and data – how much do elephant kinematics differ from those of other large animals?. Journal of Experimental Biology, 2009, 212, 153-154.	1.7	6
137	Variation in Center of Mass Estimates for Extant Sauropsids and its Importance for Reconstructing Inertial Properties of Extinct Archosaurs. Anatomical Record, 2009, 292, 1442-1461.	1.4	63
138	The evolutionary continuum of limb function from early theropods to birds. Die Naturwissenschaften, 2009, 96, 423-448.	1.6	124
139	More thoughts on the relationship between apparent and material densities in bone. Journal of Biomechanics, 2009, 42, 794-795.	2.1	3
140	Constraint-based exclusion of limb poses for reconstructing theropod dinosaur locomotion. Journal of Vertebrate Paleontology, 2009, 29, 535-544.	1.0	77
141	Biomechanics of Running Indicates Endothermy in Bipedal Dinosaurs. PLoS ONE, 2009, 4, e7783.	2.5	49
142	Segmental Kinematic Coupling of the Human Spinal Column during Locomotion. Journal of Bionic Engineering, 2008, 5, 328-334.	5.0	19
143	Some basic relationships between density values in cancellous and cortical bone. Journal of Biomechanics, 2008, 41, 1961-1968.	2.1	137
144	The Anatomical Foundation for Multidisciplinary Studies of Animal Limb Function: Examples from Dinosaur and Elephant Limb Imaging Studies. , 2008, , 23-38.		30

#	Article	IF	CITATIONS
145	The three-dimensional locomotor dynamics of African (Loxodonta africana) and Asian (Elephas) Tj ETQq1 1 0	.784314 rgBT 3.4	/Overlock 51
210	Interface, 2008, 5, 195-211.		
146	Ontogenetic scaling of foot musculoskeletal anatomy in elephants. Journal of the Royal Society Interface, 2008, 5, 465-475.	3.4	43
	The movements of limb segments and joints during locomotion in African and Asian elephants. Journal		
147	of Experimental Biology, 2008, 211, 3057-3057.	1.7	0
148	The movements of limb segments and joints during locomotion in African and Asian elephants. Journal of Experimental Biology, 2008, 211, 2735-2751.	1.7	52
149	A 3D interactive method for estimating body segmental parameters in animals: Application to the turning and running performance of Tyrannosaurus rex. Journal of Theoretical Biology, 2007, 246, 660-680.	1.7	81
150	The evolution ofÂlocomotion inÂarchosaurs. Comptes Rendus - Palevol, 2006, 5, 519-530.	0.2	73
151	The structure of the cushions in the feet of African elephants (Loxodonta africana). Journal of Anatomy, 2006, 209, 781-792.	1.5	96
152	Beyond the bones. Nature, 2006, 440, 292-294.	27.8	61
153	The locomotor kinematics of Asian and African elephants: changes with speed and size. Journal of Experimental Biology, 2006, 209, 3812-3827.	1.7	124
154	Functional specialisation of pelvic limb anatomy in horses (Equus caballus). Journal of Anatomy, 2005, 206, 557-574.	1.5	140
155	Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed. Paleobiology, 2005, 31, 676-701.	2.0	23
156	Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed. Paleobiology, 2005, 31, 676.	2.0	163
157	New information onSegisaurus halli, a small theropod dinosaur from the Early Jurassic of Arizona. Journal of Vertebrate Paleontology, 2005, 25, 835-849.	1.0	53
158	Biomechanical modeling and sensitivity analysis of bipedal running ability. II. Extinct taxa. Journal of Morphology, 2004, 262, 441-461.	1.2	92
159	Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa. Journal of Morphology, 2004, 262, 421-440.	1.2	111
160	Are fast-moving elephants really running?. Nature, 2003, 422, 493-494.	27.8	115
161	Early birds surmount steep slopes. Nature, 2003, 426, 777-778.	27.8	3
162	The evolution of hindlimb tendons and muscles on the line to crown-group birds. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 133, 1051-1086.	1.8	123

#	Article	IF	CITATIONS
163	Pelvic and hindlimb musculature ofTyrannosaurus rex (Dinosauria: Theropoda). Journal of Morphology, 2002, 253, 207-228.	1.2	213
164	Tyrannosaurus was not a fast runner. Nature, 2002, 415, 1018-1021.	27.8	169
165	The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society, 2001, 131, 123-168.	2.3	198
166	The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society, 2001, 131, 169-197.	2.3	210
167	The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society, 2001, 131, 169-197.	2.3	7
168	Theropod Locomotion. American Zoologist, 2000, 40, 640-663.	0.7	11
169	Theropod Locomotion1. American Zoologist, 2000, 40, 640-663.	0.7	73
170	Adductors, abductors, and the evolution of archosaur locomotion. Paleobiology, 2000, 26, 734-751.	2.0	174
171	Phylogenetic definitions and nomenclature of the major taxonomic categories of the carnivorous Dinosauria (Theropoda). Journal of Vertebrate Paleontology, 1999, 19, 69-80.	1.0	87
172	The first known alvarezsaurid (Theropoda: Aves) from North America. Journal of Vertebrate Paleontology, 1998, 18, 447-450.	1.0	38