
Sylvain L Guérin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5634413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moyamoya Disease Susceptibility Gene <i>RNF213</i> Regulates Endothelial Barrier Function. Stroke, 2022, 53, 1263-1275.	1.0	26
2	Contribution of the STAT Family of Transcription Factors to the Expression of the Serotonin 2B (HTR2B) Receptor in Human Uveal Melanoma. International Journal of Molecular Sciences, 2022, 23, 1564.	1.8	6
3	The WNK1 kinase regulates the stability of transcription factors during wound healing of human corneal epithelial cells. Journal of Cellular Physiology, 2022, , .	2.0	0
4	The Human Tissue-Engineered Cornea (hTEC): Recent Progress. International Journal of Molecular Sciences, 2021, 22, 1291.	1.8	27
5	Development of a 3D psoriatic skin model optimized for infiltration of IL-17A producing T cells: Focus on the crosstalk between T cells and psoriatic keratinocytes. Acta Biomaterialia, 2021, 136, 210-222.	4.1	15
6	Investigation of Omega-3 Polyunsaturated Fatty Acid Biological Activity in a Tissue-Engineered Skin Model Involving Psoriatic Cells. Journal of Investigative Dermatology, 2021, 141, 2391-2401.e13.	0.3	18
7	Contribution of the Transcription Factors Sp1/Sp3 and AP-1 to Clusterin Gene Expression during Corneal Wound Healing of Tissue-Engineered Human Corneas. International Journal of Molecular Sciences, 2021, 22, 12426.	1.8	5
8	Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis. Genes, 2020, 11, 1155.	1.0	27
9	The Self-assembly Approach as a Tool for the Tissue Engineering of a Bi-lamellar Human Cornea. Methods in Molecular Biology, 2020, 2145, 103-118.	0.4	1
10	Synthesis of Ultrastable Gold Nanoparticles as a New Drug Delivery System. Molecules, 2019, 24, 2929.	1.7	38
11	Grafting of an autologous tissue-engineered human corneal epithelium to a patient with limbal stem cell deficiency (LSCD). American Journal of Ophthalmology Case Reports, 2019, 15, 100532.	0.4	11
12	Contribution of the WNK1 kinase to corneal wound healing using the tissueâ€engineered human cornea as an in vitro model. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1595-1608.	1.3	10
13	Analysis of the proteasome activity and the turnover of the serotonin receptor 2B (HTR2B) in human uveal melanoma. Experimental Eye Research, 2019, 184, 72-77.	1.2	12
14	Irradiated Human Fibroblasts as a Substitute Feeder Layer to Irradiated Mouse 3T3 for the Culture of Human Corneal Epithelial Cells: Impact on the Stability of the Transcription Factors Sp1 and NFI. International Journal of Molecular Sciences, 2019, 20, 6296.	1.8	6
15	Enhanced wound healing of tissue-engineered human corneas through altered phosphorylation of the CREB and AKT signal transduction pathways. Acta Biomaterialia, 2018, 73, 312-325.	4.1	18
16	The Tissue-Engineered Human Psoriatic Skin Substitute: A Valuable In Vitro Model to Identify Genes with Altered Expression in Lesional Psoriasis. International Journal of Molecular Sciences, 2018, 19, 2923.	1.8	19
17	Transcription of the Human 5-Hydroxytryptamine Receptor 2B (HTR2B) Gene Is under the Regulatory Influence of the Transcription Factors NFI and RUNX1 in Human Uveal Melanoma. International Journal of Molecular Sciences, 2018, 19, 3272.	1.8	12
18	Qualitatively Monitoring Binding and Expression of the Transcription Factors Sp1 and NFI as a Useful Tool to Evaluate the Quality of Primary Cultured Epithelial Stem Cells in Tissue Reconstruction. Methods in Molecular Biology, 2018, 1879, 43-73.	0.4	4

Sylvain L Guérin

#	Article	IF	CITATIONS
19	The presence of a feeder layer improves human corneal endothelial cell proliferation by altering the expression of the transcription factors Sp1 and NFI. Experimental Eye Research, 2018, 176, 161-173.	1.2	5
20	Effects of Long-term Serial Passaging on the Characteristics and Properties of Cell Lines Derived From Uveal Melanoma Primary Tumors. , 2016, 57, 5288.		36
21	Tissue-engineered human psoriatic skin supplemented with cytokines as an <i>inÂvitro</i> model to study plaque psoriasis. Regenerative Medicine, 2016, 11, 545-557.	0.8	17
22	The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing. Biomaterials, 2016, 78, 86-101.	5.7	50
23	Functional Impact of Collagens on the Activity Directed by the Promoter of theα5Integrin Subunit Gene in Corneal Epithelial Cells. , 2015, 56, 6217.		6
24	Contribution of Sp1 to Telomerase Expression and Activity in Skin Keratinocytes Cultured With a Feeder Layer. Journal of Cellular Physiology, 2015, 230, 308-317.	2.0	5
25	Characterization of the human $\hat{l}\pm9$ integrin subunit gene: Promoter analysis and transcriptional regulation in ocular cells. Experimental Eye Research, 2015, 135, 146-163.	1.2	7
26	Qualitatively Monitoring Binding and Expression of the Transcription Factor Sp1 as a Useful Tool to Evaluate the Reliability of Primary Cultured Epithelial Stem Cells in Tissue Reconstruction. Methods in Molecular Biology, 2013, 989, 119-142.	0.4	2
27	Expression of the α5 integrin gene in corneal epithelial cells cultured on tissue-engineered human extracellular matrices. Biomaterials, 2013, 34, 6367-6376.	5.7	13
28	Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan. International Journal of Molecular Sciences, 2013, 14, 4684-4704.	1.8	63
29	A Tissue-Engineered Corneal Wound Healing Model for the Characterization of Reepithelialization. Methods in Molecular Biology, 2013, 1037, 59-78.	0.4	8
30	Rescue of the Transcription Factors Sp1 and NFI in Human Skin Keratinocytes through a Feeder-Layer-Dependent Suppression of the Proteasome Activity. Journal of Molecular Biology, 2012, 418, 281-299.	2.0	12
31	Altered Expression of the Poly(ADP-Ribosyl)ation Enzymes in Uveal Melanoma and Regulation of <i>PARG</i> Gene Expression by the Transcription Factor ERM. , 2012, 53, 6219.		17
32	Suppression of $\hat{1}\pm 5$ gene expression is closely related to the tumorigenic properties of uveal melanoma cell lines. Pigment Cell and Melanoma Research, 2011, 24, 643-655.	1.5	19
33	Tissue engineering of skin and cornea. Annals of the New York Academy of Sciences, 2010, 1197, 166-177.	1.8	31
34	Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Molecular Vision, 2010, 16, 2192-201.	1.1	73
35	Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering. , 2009, 50, 2645.		70
36	Differential Binding of the Transcription Factors Sp1, AP-1, and NFI to the Promoter of the Human α5 Integrin Gene Dictates Its Transcriptional Activity. , 2009, 50, 57.		27

Sylvain L Guérin

#	Article	IF	CITATIONS
37	Electrophoretic Mobility Shift Assays for the Analysis of DNA-Protein Interactions. Methods in Molecular Biology, 2009, 543, 15-35.	0.4	37
38	Characterization of Wound Reepithelialization Using a New Human Tissue-Engineered Corneal Wound Healing Model. , 2008, 49, 1376.		70
39	Transcriptional Regulation of the Human $\hat{I}\pm 6$ Integrin Gene by the Transcription Factor NFI during Corneal Wound Healing. , 2008, 49, 3758.		15
40	Laminin Reduces Expression of the Human α6 Integrin Subunit Gene by Altering the Level of the Transcription Factors Sp1 and Sp3. , 2007, 48, 3490.		32
41	Regulation of poly(ADP-ribose) polymerase-1 (PARP-1) gene expression through the post-translational modification of Sp1: a nuclear target protein of PARP-1. BMC Molecular Biology, 2007, 8, 96.	3.0	59
42	Control of integrin genes expression in the eye. Progress in Retinal and Eye Research, 2007, 26, 99-161.	7.3	35
43	The Feeder layer-mediated extended lifetime of cultured human skin keratinocytes is associated with altered levels of the transcription factors Sp1 and Sp3. Journal of Cellular Physiology, 2006, 206, 831-842.	2.0	36
44	Transcriptional regulation of the cyclin-dependent kinase inhibitor 1A (p21) gene by NFI in proliferating human cells. Nucleic Acids Research, 2006, 34, 6472-6487.	6.5	57
45	Regulation of the Integrin Subunit α5 Gene Promoter by the Transcription Factors Sp1/Sp3 Is Influenced by the Cell Density in Rabbit Corneal Epithelial Cells. , 2003, 44, 3742.		39
46	Influence of Sp1/Sp3 Expression on Corneal Epithelial Cells Proliferation and Differentiation Properties in Reconstructed Tissues. , 2003, 44, 1447.		48
47	Members of the Nuclear Factor 1 Family Reduce the Transcriptional Potential of the Nuclear Receptor LXRα Promoter. Biochemical and Biophysical Research Communications, 2001, 289, 1262-1267.	1.0	11
48	Nuclear Factor 1 Interferes with Sp1 Binding through a Composite Element on the Rat Poly(ADP-ribose) Polymerase Promoter to Modulate Its Activity in Vitro. Journal of Biological Chemistry, 2001, 276, 20766-20773.	1.6	34
49	Can we produce a human corneal equivalent by tissue engineering?. Progress in Retinal and Eye Research, 2000, 19, 497-527.	7.3	117
50	Expression of the α5 Integrin Subunit Gene Promoter Is Positively Regulated by the Extracellular Matrix Component Fibronectin through the Transcription Factor Sp1 in Corneal Epithelial Cells in Vitro. Journal of Biological Chemistry, 2000, 275, 39182-39192.	1.6	51
51	Reconstructed Human Cornea Produced in vitro by Tissue Engineering. Pathobiology, 1999, 67, 140-147.	1.9	176
52	The Rat Growth Hormone and Human Cellular Retinol Binding Protein 1 Genes Share Homologous NF1-Like Binding Sites That Exert Either Positive or Negative Influences on Gene ExpressionIn Vitro. DNA and Cell Biology, 1997, 16, 951-967.	0.9	16
53	Expression of the rat growth-hormone gene is under the influence of a cell-type-specific silencer element. FEBS Journal, 1993, 213, 399-404.	0.2	13
54	An Improved CAT Assay for Promoter Analysis in Either Transgenic Mice or Tissue Culture Cells. DNA and Cell Biology, 1992, 11, 83-90.	0.9	171