Hong-Jun Gao

List of Publications by Citations

Source: https://exaly.com/author-pdf/5633688/hong-jun-gao-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

180 8,623 40 90 h-index g-index citations papers 5.89 10,431 10.5 192 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
180	Buckled silicene formation on Ir(111). Nano Letters, 2013 , 13, 685-90	11.5	950
179	Buckled germanene formation on Pt(111). Advanced Materials, 2014, 26, 4820-4	24	611
178	Recent progress in 2D group-VA semiconductors: from theory to experiment. <i>Chemical Society Reviews</i> , 2018 , 47, 982-1021	58.5	549
177	Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. <i>Chemistry of Materials</i> , 2009 , 21, 1778-1780	9.6	458
176	Monolayer PtSe∏a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. <i>Nano Letters</i> , 2015 , 15, 4013-8	11.5	420
175	Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001). <i>Advanced Materials</i> , 2009 , 21, 2777-2780	24	351
174	Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. <i>ACS Nano</i> , 2015 , 9, 10612-20	16.7	334
173	Evidence for Majorana bound states in an iron-based superconductor. <i>Science</i> , 2018 , 362, 333-335	33.3	299
172	Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13696-13700	3.8	280
171	Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe. Advanced Materials, 2017, 29, 16	0 5 407	249
170	Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. <i>Nano Research</i> , 2009 , 2, 706-712	10	198
169	Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene. <i>Nano Letters</i> , 2018 , 18, 2133-2139	11.5	159
168	Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2197		139
167	Direct visualization of surface-assisted two-dimensional diyne polycyclotrimerization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5567-70	16.4	115
166	Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe film. <i>Nature Communications</i> , 2017 , 8, 14216	17.4	110
165	Black Arsenic: A Layered Semiconductor with Extreme In-Plane Anisotropy. <i>Advanced Materials</i> , 2018 , 30, e1800754	24	109
164	Reversible single spin control of individual magnetic molecule by hydrogen atom adsorption. <i>Scientific Reports</i> , 2013 , 3, 1210	4.9	106

163	Atomically precise, custom-design origami graphene nanostructures. <i>Science</i> , 2019 , 365, 1036-1040	33.3	95
162	Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). <i>Applied Physics Letters</i> , 2012 , 100, 093101	3.4	90
161	Two-dimensional transition metal honeycomb realized: Hf on Ir(111). Nano Letters, 2013, 13, 4671-4	11.5	89
160	Fabrication of Vertically Aligned Single-Crystalline Boron Nanowire Arrays and Investigation of Their Field-Emission Behavior. <i>Advanced Materials</i> , 2008 , 20, 2609-2615	24	88
159	Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. <i>Science</i> , 2020 , 367, 189-192	33.3	80
158	Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites. <i>Angewandte Chemie</i> , 2011 , 123, 6931-6934	3.6	77
157	Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene. <i>Small</i> , 2014 , 10, 2215-25	11	74
156	Direct Evidence of Dirac Signature in Bilayer Germanene Islands on Cu(111). <i>Advanced Materials</i> , 2017 , 29, 1606046	24	72
155	Epitaxial Growth of Honeycomb Monolayer CuSe with Dirac Nodal Line Fermions. <i>Advanced Materials</i> , 2018 , 30, e1707055	24	72
154	Stable, reproducible nanorecording on rotaxane thin films. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15338-9	16.4	72
153	Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2204-5	16.4	70
152	Half-integer level shift of vortex bound states in an iron-based superconductor. <i>Nature Physics</i> , 2019 , 15, 1181-1187	16.2	69
151	Sequence of Silicon Monolayer Structures Grown on a Ru Surface: from a Herringbone Structure to Silicene. <i>Nano Letters</i> , 2017 , 17, 1161-1166	11.5	67
150	Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. <i>Chemical Society Reviews</i> , 2018 , 47, 6073-6100	58.5	63
149	Construction of bilayer PdSe2 on epitaxial graphene. <i>Nano Research</i> , 2018 , 11, 5858-5865	10	62
148	Epitaxially grown monolayer VSe 2 : an air-stable magnetic two-dimensional material with low work function at edges. <i>Science Bulletin</i> , 2018 , 63, 419-425	10.6	61
147	Introduction of Interfacial Charges to Black Phosphorus for a Family of Planar Devices. <i>Nano Letters</i> , 2016 , 16, 6870-6878	11.5	60
146	Stable Silicene in Graphene/Silicene Van der Waals Heterostructures. <i>Advanced Materials</i> , 2018 , 30, e18	804650	55

145	Kondo effect of cobalt adatoms on a graphene monolayer controlled by substrate-induced ripples. <i>Nano Letters</i> , 2014 , 14, 4011-5	11.5	51
144	Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe grown by chemical vapor deposition. <i>Nature Communications</i> , 2021 , 12, 809	17.4	51
143	Direct Four-Probe Measurement of Grain-Boundary Resistivity and Mobility in Millimeter-Sized Graphene. <i>Nano Letters</i> , 2017 , 17, 5291-5296	11.5	48
142	Roton pair density wave in a strong-coupling kagome superconductor. <i>Nature</i> , 2021 , 599, 222-228	50.4	47
141	Studies of graphene-based nanoelectromechanical switches. <i>Nano Research</i> , 2012 , 5, 82-87	10	46
140	Evidence of Topological Edge States in Buckled Antimonene Monolayers. <i>Nano Letters</i> , 2019 , 19, 6323-	63235	40
139	Role of Cooperative Interactions in the Intercalation of Heteroatoms between Graphene and a Metal Substrate. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7099-103	16.4	38
138	Polymorphism and chiral expression in two-dimensional subphthalocyanine crystals on Au(111). <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 1318-22	3.6	38
137	Identifying and Visualizing the Edge Terminations of Single-Layer MoSe Island Epitaxially Grown on Au(111). <i>ACS Nano</i> , 2017 , 11, 1689-1695	16.7	35
136	Moir Deatings in graphene on Ru (0001). <i>Physical Review B</i> , 2013 , 88,	3.3	35
135	Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. <i>Nano Research</i> , 2017 , 10, 3377-3384	10	33
134	Ferromagnetism and perfect spin filtering in transition-metal-doped graphyne nanoribbons. <i>Physical Review B</i> , 2015 , 92,	3.3	32
133	Spontaneous Formation of 1D Pattern in Monolayer VSe with Dispersive Adsorption of Pt Atoms for HER Catalysis. <i>Nano Letters</i> , 2019 , 19, 4897-4903	11.5	31
132	Building block analysis of 2D amorphous networks reveals medium range correlation. <i>Journal of Non-Crystalline Solids</i> , 2016 , 435, 40-47	3.9	31
131	Reversible achiral-to-chiral switching of single Mnphthalocyanine molecules by thermal hydrogenation and inelastic electron tunneling dehydrogenation. <i>ACS Nano</i> , 2014 , 8, 2246-51	16.7	31
130	Strain-induced anisotropic transport properties of LaBaCoDIBIthin films on NdGaOIsubstrates. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8526-30	9.5	28
130		9.5	28

127	Site- and Configuration-Selective Anchoring of Iron P hthalocyanine on the Step Edges of Au(111) Surface. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 10791-10796	3.8	27	
126	Quasi-2D Transport and Weak Antilocalization Effect in Few-layered VSe. <i>Nano Letters</i> , 2019 , 19, 4551-4	55 5	26	
125	Structural and Electronic Properties of Pb- Intercalated Graphene on Ru(0001). <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9839-9844	3.8	26	
124	Localized spin-orbit polaron in magnetic Weyl semimetal CoSnS. <i>Nature Communications</i> , 2020 , 11, 5613	3 _{17.4}	26	
123	Tuning structural and mechanical properties of two-dimensional molecular crystals: the roles of carbon side chains. <i>Nano Letters</i> , 2012 , 12, 1229-34	11.5	26	
122	A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3530		26	
121	Atomically sharp interface enabled ultrahigh-speed non-volatile memory devices. <i>Nature Nanotechnology</i> , 2021 , 16, 882-887	28.7	26	
120	Revealing the atomic site-dependent g factor within a single magnetic molecule via the extended Kondo effect. <i>Physical Review Letters</i> , 2015 , 114, 126601	7.4	24	
119	Observation of the Kondo Effect in Multilayer Single-Crystalline VTe Nanoplates. <i>Nano Letters</i> , 2019 , 19, 8572-8580	11.5	24	
118	InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. <i>Nano Research</i> , 2020 , 13, 1127-1132	10	24	
117	Construction of Two-Dimensional Chiral Networks through Atomic Bromine on Surfaces. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 326-331	6.4	23	
116	Epitaxy of Ultrathin SnSe Single Crystals on Polydimethylsiloxane: In-Plane Electrical Anisotropy and Gate-Tunable Thermopower. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600292	6.4	23	
115	Reliable Spin Valves of Conjugated Polymer Based on Mechanically Transferrable Top Electrodes. <i>ACS Nano</i> , 2018 , 12, 12657-12664	16.7	23	
114	Moir Buperlattice-level stick-slip instability originated from geometrically corrugated graphene on a strongly interacting substrate. 2D Materials, 2017, 4, 025079	5.9	22	
113	Multichannel interaction mechanism in a molecule-metal interface. Physical Review B, 2008, 77,	3.3	22	
112	A new Majorana platform in an Fe-As bilayer superconductor. <i>Nature Communications</i> , 2020 , 11, 5688	17.4	22	
111	Spontaneous Formation of a Superconductor-Topological Insulator-Normal Metal Layered Heterostructure. <i>Advanced Materials</i> , 2016 , 28, 5013-7	24	22	
110	Tunable giant magnetoresistance in a single-molecule junction. <i>Nature Communications</i> , 2019 , 10, 3599	17.4	21	

109	Impurity-induced formation of bilayered graphene on copper by chemical vapor deposition. <i>Nano Research</i> , 2016 , 9, 2803-2810	10	19
108	Room-Temperature, Low-Barrier Boron Doping of Graphene. <i>Nano Letters</i> , 2015 , 15, 6464-8	11.5	18
107	Design of Two-Dimensional Graphene-like Dirac Materials EXBeB (X = H, F, Cl) from Non-graphene-like Eborophene. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4594-4599	6.4	18
106	Single crystalline highly epitaxial Pt thin films on (001) SrTiO3. <i>Applied Physics Letters</i> , 2008 , 92, 102102	3.4	18
105	Synthesis, characterization and self-assemblies of magnetite nanoparticles. <i>Surface and Interface Analysis</i> , 2006 , 38, 1063-1067	1.5	18
104	Modification of the Potential Landscape of Molecular Rotors on Au(111) by the Presence of an STM Tip. <i>Nano Letters</i> , 2018 , 18, 4704-4709	11.5	17
103	Bandgap broadening at grain boundaries in single-layer MoS2. <i>Nano Research</i> , 2018 , 11, 6102-6109	10	17
102	Surface-step-terrace-induced anomalous transport properties in highly epitaxial La0.67Ca0.33MnO3 thin films. <i>ACS Applied Materials & amp; Interfaces</i> , 2010 , 2, 2496-9	9.5	17
101	Effect of Contact Mode on the Electrical Transport and Field-Emission Performance of Individual Boron Nanowires. <i>Advanced Functional Materials</i> , 2010 , 20, 1994-2003	15.6	17
100	Self-Assembled Patterns and Young Modulus of Single-Layer Naphthalocyanine Molecules on Ag(111). <i>Journal of Physical Chemistry C</i> , 2015 , 119, 8208-8212	3.8	16
99	Termination of Ge surfaces with ultrathin GeS and GeS layers via solid-state sulfurization. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 32473-32480	3.6	15
98	Pressure-induced superconducting state in crystalline boron nanowires. <i>Physical Review B</i> , 2009 , 79,	3.3	15
97	A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction. <i>Journal of Materials Research</i> , 2007 , 22, 1921-1926	2.5	15
96	Ferroelectric-Gated InSe Photodetectors with High On/Off Ratios and Photoresponsivity. <i>Nano Letters</i> , 2020 , 20, 6666-6673	11.5	15
95	Interatomic Spin Coupling in Manganese Clusters Registered on Graphene. <i>Physical Review Letters</i> , 2017 , 119, 176806	7.4	14
94	Sizable Band Gap in Epitaxial Bilayer Graphene Induced by Silicene Intercalation. <i>Nano Letters</i> , 2020 , 20, 2674-2680	11.5	14
93	Fabrication of Millimeter-Scale, Single-Crystal One-Third-Hydrogenated Graphene with Anisotropic Electronic Properties. <i>Advanced Materials</i> , 2018 , 30, e1801838	24	14
92	Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate. <i>Chinese Physics Letters</i> , 2019 , 36, 028102	1.8	13

91	Tuning the morphology of chevron-type graphene nanoribbons by choice of annealing temperature. <i>Nano Research</i> , 2018 , 11, 6190-6196	10	13
90	Thick Layered Semiconductor Devices with Water Top-Gates: High On-Off Ratio Field-Effect Transistors and Aqueous Sensors. <i>ACS Applied Materials & Description of the Property of the Property</i>	9.5	13
89	Upgrade of a commercial four-probe scanning tunneling microscopy system. <i>Review of Scientific Instruments</i> , 2017 , 88, 063704	1.7	12
88	Air-Stable Monolayer Cu Se Exhibits a Purely Thermal Structural Phase Transition. <i>Advanced Materials</i> , 2020 , 32, e1908314	24	12
87	Insulating SiO under Centimeter-Scale, Single-Crystal Graphene Enables Electronic-Device Fabrication. <i>Nano Letters</i> , 2020 , 20, 8584-8591	11.5	12
86	Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe. <i>Nature Communications</i> , 2021 , 12, 1978	17.4	12
85	Construction of two-dimensional hydrogen clusters on Au(111) directed by phthalocyanine molecules. <i>Nano Research</i> , 2014 , 7, 79-84	10	11
84	Manipulation and four-probe analysis of nanowires in UHV by application of four tunneling microscope tips: a new method for the investigation of electrical transport through nanowires. <i>Surface and Interface Analysis</i> , 2006 , 38, 1096-1102	1.5	11
83	Two-dimensional self-organization of 1-nonanethiol-capped gold nanoparticles. <i>Science Bulletin</i> , 2001 , 46, 996-998		11
82	Centimeter-scale, single-crystalline, AB-stacked bilayer graphene on insulating substrates. <i>2D Materials</i> , 2019 , 6, 045044	5.9	10
81	Modeling Atomic-Scale Electrical Contact Quality Across Two-Dimensional Interfaces. <i>Nano Letters</i> , 2019 , 19, 3654-3662	11.5	10
80	Stereoselective On-Surface Cyclodehydrofluorization of a Tetraphenylporphyrin and Homochiral Self-Assembly. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17413-17416	16.4	10
79	Fabrication of patterned boron carbide nanowires and their electrical, field emission, and flexibility properties. <i>Nano Research</i> , 2012 , 5, 896-902	10	10
78	Anomalous phase relations of quantum size effects in ultrathin Pb films on Si(111). <i>Physical Review B</i> , 2013 , 87,	3.3	10
77	Synthesis of monodisperse CoPt3 nanocrystals and their catalytic behavior for growth of boron nanowires. <i>Nano Research</i> , 2011 , 4, 780-787	10	10
76	Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer. <i>Nano Research</i> , 2019 , 12, 3095-3100	10	9
75	Lattice-Directed Construction of Metal©rganic Molecular Wires of Pentacene on the Au(110) Surface. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 21650-21657	3.8	9
74	Evidence for Ultralow-Energy Vibrations in Large Organic Molecules. <i>Nano Letters</i> , 2017 , 17, 4929-4933	11.5	9

73	Stable and reversible optoelectrical dual-mode data storage based on a ferrocenlylspiropyran molecule. <i>Applied Physics Letters</i> , 2009 , 95, 183307	3.4	9
72	Self-assembly of molecular wires on H-terminated Si(100) surfaces driven by London dispersion forces. <i>Physical Review B</i> , 2011 , 84,	3.3	9
71	Recent Advances in Synthesis and Study of 2D Twisted Transition Metal Dichalcogenide Bilayers. <i>Small Structures</i> , 2021 , 2, 2000153	8.7	9
70	Direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene via van der Pauw geometry. <i>Chinese Physics B</i> , 2017 , 26, 066801	1.2	8
69	Construction of single-crystalline supramolecular networks of perchlorinated hexa-peri-hexabenzocoronene on Au(111). <i>Journal of Chemical Physics</i> , 2015 , 142, 101911	3.9	8
68	On-Surface Synthesis of NBN-Doped Zigzag-Edged Graphene Nanoribbons. <i>Angewandte Chemie</i> , 2020 , 132, 8958-8964	3.6	8
67	Recovery of edge states of graphene nanoislands on an iridium substrate by silicon intercalation. <i>Nano Research</i> , 2018 , 11, 3722-3729	10	8
66	Constructing molecular structures on periodic superstructure of graphene/Ru(0001). <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2014 , 372, 20130015	3	8
65	Alternating the Crystalline Structural Transition of Coronene Molecular Overlayers on Ag(110) through Temperature Increase. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17643-17647	3.8	8
64	Simultaneous generation of direct- and indirect-gap photoluminescence in multilayer MoS2 bubbles. <i>Physical Review Materials</i> , 2020 , 4,	3.2	8
63	Tuning Molecular Superlattice by Charge-Density-Wave Patterns in Two-Dimensional Monolayer Crystals. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3545-3551	6.4	8
62	Force-Activated Isomerization of a Single Molecule. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10673-10680	16.4	7
61	Barrierless On-Surface Metal Incorporation in Phthalocyanine-Based Molecules. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 6678-6683	3.8	7
60	Reversible and Reproducible Conductance Transition in a Polyimide Thin Film. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17038-17041	3.8	7
59	Observation of magnetic adatom-induced Majorana vortex and its hybridization with field-induced Majorana vortex in an iron-based superconductor. <i>Nature Communications</i> , 2021 , 12, 1348	17.4	7
58	Spectroscopic signatures of edge states in hexagonal boron nitride. <i>Nano Research</i> , 2019 , 12, 1663-1667	7 10	6
57	Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation. <i>Chinese Physics B</i> , 2019 , 28, 078103	1.2	6
56	Thermally Controlled Adenine Dimer Chain Rotation on Cu(110): The Critical Role of van der Waals Interactions. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 6278-6282	3.8	6

(2021-2010)

55	Synthesis of PbTe/Pb quasi-one-dimensional nanostructure material arrays by electrodeposition. <i>Applied Physics Letters</i> , 2010 , 96, 143113	3.4	6
54	Anchoring of a single molecular rotor and its array on metal surfaces using molecular design and self-assembly. <i>International Journal of Molecular Sciences</i> , 2010 , 11, 656-71	6.3	6
53	Nanoscale Control of One-Dimensional Confined States in Strongly Correlated Homojunctions <i>Nano Letters</i> , 2022 ,	11.5	6
52	NBN-Doped Bis-Tetracene and Peri-Tetracene: Synthesis and Characterization. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26115-26121	16.4	6
51	Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface. <i>Chinese Physics B</i> , 2015 , 24, 076802	1.2	5
50	Structural Transition and Thermal Stability of a Coronene Molecular Monolayer on Cu(110). <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11180-11184	3.8	5
49	Layer-by-Layer Epitaxy of Porphyrinligand Fe(II)-Fe(III) Nanoarchitectures for Advanced Metall Drganic Framework Growth. <i>ACS Applied Nano Materials</i> , 2020 , 3, 11752-11759	5.6	5
48	Edge- and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures. <i>Chinese Physics B</i> , 2021 , 30, 018105	1.2	5
47	Honeycomb AgSe Monolayer Nanosheets for Studying Two-dimensional Dirac Nodal Line Fermions. <i>ACS Applied Nano Materials</i> , 2021 , 4, 8845-8850	5.6	5
46	Substrate, a choice of engineering the pseudospin in graphene. 2D Materials, 2019, 6, 045050	5.9	4
45	Identifying multiple configurations of complex molecules on metal surfaces. <i>Small</i> , 2012 , 8, 796-806, 795	11	4
44	Twisted charge-density-wave patterns in bilayer 2D crystals and modulated electronic states. <i>2D Materials</i> , 2022 , 9, 014007	5.9	4
43	Structural and Conductance Transitions of Rotaxane Based Nanostructures and Application in Nanorecording. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 970-981	0.3	4
42	Construction of monolayer IrTe2 and the structural transition under low temperatures. <i>Chinese Physics B</i> , 2020 , 29, 078102	1.2	4
41	Epitaxial synthesis and electronic properties of monolayer Pd2Se3. <i>Chinese Physics B</i> , 2020 , 29, 098102	1.2	4
40	Shallowing interfacial carrier trap in transition metal dichalcogenide heterostructures with interlayer hybridization. <i>Nano Research</i> , 2021 , 14, 1390-1396	10	4
39	Controllable Density of Atomic Bromine in a Two-Dimensional Hydrogen Bond Network. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 25681-25684	3.8	4
38	Visualization of Charge-Density-Wave Reconstruction and Electronic Superstructure at the Edge of Correlated Insulator 1T-NbSe <i>ACS Nano</i> , 2021 ,	16.7	4

37	From bidirectional rectifier to polarity-controllable transistor in black phosphorus by dual gate modulation. <i>2D Materials</i> , 2017 , 4, 025056	5.9	3
36	Self-Assembly Evolution of Metal-Free Naphthalocyanine Molecules on Ag(111) at the Submonolayer Coverage. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 7202-7208	3.8	3
35	Wrinkle-induced highly conductive channels in graphene on SiO/Si substrates. <i>Nanoscale</i> , 2020 , 12, 120)3 8:/ 12(04\$
34	Electronic effects and fundamental physics studied in molecular interfaces. <i>Chemical Communications</i> , 2018 , 54, 5508-5517	5.8	3
33	Controllable fabrication and photocatalytic performance of nanoscale single-layer MoSe islands with substantial edges on an Ag(111) substrate. <i>Nanoscale</i> , 2021 , 13, 19165-19171	7.7	3
32	Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. <i>Nature Communications</i> , 2021 , 12, 4146	17.4	3
31	The As-surface of an iron-based superconductor CaKFe4As4. <i>Nano Research</i> ,1	10	3
30	Reversible switching of Kondo resonance in a single-molecule junction. <i>Nano Research</i> ,1	10	3
29	Understanding formation of molecular rotor array on Au(111) surface. <i>Frontiers of Physics in China</i> , 2010 , 5, 380-386		2
28	Fabrication and manipulation of nanosized graphene homojunction with atomically-controlled boundaries. <i>Nano Research</i> , 2020 , 13, 3286-3291	10	2
27	Tuning the Proximity Effect through Interface Engineering in a Pb/Graphene/Pt Trilayer System. <i>ACS Nano</i> , 2016 , 10, 4520-4	16.7	2
26	One-step solution synthesis of a two-dimensional semiconducting covalent organometallic nanosheet the condensation of boronic acid <i>RSC Advances</i> , 2019 , 9, 29327-29330	3.7	2
25	Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate*. <i>Chinese Physics B</i> , 2021 , 30, 048102	1.2	2
24	A low-temperature scanning probe microscopy system with molecular beam epitaxy and optical access. <i>Review of Scientific Instruments</i> , 2018 , 89, 113705	1.7	2
23	Intriguing one-dimensional electronic behavior in emerging two-dimensional materials. <i>Nano Research</i> , 2021 , 14, 3810	10	2
22	Advances in two-dimensional heterostructures by mono-element intercalation underneath epitaxial graphene. <i>Progress in Surface Science</i> , 2021 , 96, 100637	6.6	2
21	Novel two-dimensional transition metal chalcogenides created by epitaxial growth. <i>Science China: Physics, Mechanics and Astronomy</i> , 2021 , 64, 1	3.6	2
20	Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching <i>Nature Communications</i> , 2022 , 13, 1843	17.4	2

(2021-2019)

19	Direct probing of imperfection-induced electrical degradation in millimeter-scale graphene on SiO 2 substrates. <i>2D Materials</i> , 2019 , 6, 045033	5.9	1
18	Surfaces: Identifying Multiple Configurations of Complex Molecules on Metal Surfaces (Small 6/2012). <i>Small</i> , 2012 , 8, 795-795	11	1
17	Boron Nanowires for Flexible Electronics and Field Emission 2009,		1
16	Observation of an Incommensurate Charge Density Wave in Monolayer TiSe_{2}/CuSe/Cu(111) Heterostructure <i>Physical Review Letters</i> , 2022 , 128, 026401	7.4	1
15	A time-shared switching scheme designed for multi-probe scanning tunneling microscope. <i>Review of Scientific Instruments</i> , 2021 , 92, 103702	1.7	1
14	Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures. <i>Chinese Physics B</i> , 2020 , 29, 118501	1.2	1
13	Direct Visualization of Hydrogen-Transfer Intermediate States by Scanning Tunneling Microscopy. Journal of Physical Chemistry Letters, 2020 , 11, 1536-1541	6.4	1
12	Recent progress of scanning tunneling microscopy/spectroscopy study of Majorana bound states in the FeTe0.55Se0.45 superconductor. <i>Superconductor Science and Technology</i> , 2021 , 34, 073001	3.1	1
11	Monolayer puckered pentagonal VTe2: An emergent two-dimensional ferromagnetic semiconductor with multiferroic coupling. <i>Nano Research</i> ,1	10	1
10	Size Dependence of Charge-Density-Wave Orders in Single-Layer NbSe Hetero/Homophase Junctions <i>Journal of Physical Chemistry Letters</i> , 2022 , 1901-1907	6.4	1
9	Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. <i>Nano Research</i> ,1	10	1
8	Progress in materials and technologies for ultrahigh density data storage. <i>Progress in Natural Science: Materials International</i> , 2003 , 13, 247-253	3.6	O
7	Construction of poly-naphthalocyanine linked by [4]-radialene-like structures on silver surfaces. <i>Nano Research</i> , 2021 , 14, 4563	10	O
6	Ferroelectric-gated ReS2 field-effect transistors for nonvolatile memory. <i>Nano Research</i> ,1	10	O
5	Intrinsically patterned corrals in monolayer Ag5Se2 and selective molecular co-adsorption. <i>Nano Research</i> ,1	10	О
4	Nanoscale Materials: A General Approach for Fast Detection of Charge Carrier Type and Conductivity Difference in Nanoscale Materials (Adv. Mater. 48/2013). <i>Advanced Materials</i> , 2013 , 25, 6916-6916	24	
3	Two-Dimensional Crystals: Graphene, Silicene, Germanene, and Stanene. <i>Springer Handbooks</i> , 2020 , 24	13-2.66	
2	Intrinsically Honeycomb-Patterned Hydrogenated Graphene. <i>Small</i> , 2021 , e2102687	11	

Surface atomic manipulation of low-dimensional structures. Wuli Xuebao/Acta Physica Sinica, 2022, 0.6