
## **Yongming Song**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/563359/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Effect of zinc borate and wood flour on thermal degradation and fire retardancy of Polyvinyl chloride (PVC) composites. Journal of Analytical and Applied Pyrolysis, 2013, 100, 230-236.                                                     | 5.5  | 110       |
| 2  | Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Industrial Crops and Products, 2018, 122, 76-84.                                                                          | 5.2  | 78        |
| 3  | An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel<br>multifunctional sensor. Carbohydrate Polymers, 2022, 284, 119199.                                                                         | 10.2 | 66        |
| 4  | Lightweight, Flexible, Thermally-Stable, and Thermally-Insulating Aerogels Derived from Cotton<br>Nanofibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2019, 7, 9202-9210.                                                  | 6.7  | 52        |
| 5  | Robust Nanofibrillated Cellulose Hydro/Aerogels from Benign Solution/Solvent Exchange Treatment.<br>ACS Sustainable Chemistry and Engineering, 2018, 6, 6624-6634.                                                                           | 6.7  | 41        |
| 6  | Conductive and fire-retardant wood/polyethylene composites based on a continuous honeycomb-like nanoscale carbon black network. Construction and Building Materials, 2020, 233, 117369.                                                      | 7.2  | 26        |
| 7  | Three-dimensional printing of cellulose nanofibers reinforced PHB/PCL/Fe3O4 magneto-responsive shape memory polymer composites with excellent mechanical properties. Additive Manufacturing, 2021, 46, 102146.                               | 3.0  | 23        |
| 8  | Styrene-Assisted Maleic Anhydride Grafted Poly(lactic acid) as an Effective Compatibilizer for Wood<br>Flour/Poly(lactic acid) Bio-Composites. Polymers, 2017, 9, 623.                                                                       | 4.5  | 21        |
| 9  | Printability, <scp>shapeâ€memory</scp> , and mechanical properties of<br><scp>PHB</scp> / <scp>PCL</scp> / <scp>CNFs</scp> composites. Journal of Applied Polymer Science,<br>2021, 138, 50510.                                              | 2.6  | 21        |
| 10 | Expandable graphite's versatility and synergy with carbon black and ammonium polyphosphate in<br>improving antistatic and fireâ€retardant properties of wood flour/polypropylene composites. Polymer<br>Composites, 2017, 38, 767-773.       | 4.6  | 18        |
| 11 | Effects of ultraviolet absorbers on the ultraviolet degradation of riceâ€hull/highâ€density polyethylene<br>composites. Journal of Applied Polymer Science, 2012, 126, 906-915.                                                              | 2.6  | 14        |
| 12 | Efficient flame-retardant hybrid coatings on wood plastic composites by layer-by-layer assembly.<br>Journal of Cleaner Production, 2021, 321, 128949.                                                                                        | 9.3  | 14        |
| 13 | Effects of lubricants on the rheological and mechanical properties of wood flour/polypropylene composites. Journal of Applied Polymer Science, 2019, 136, 47667.                                                                             | 2.6  | 13        |
| 14 | The influence of zinc compounds on thermal stability and flame retardancy of wood flour polyvinyl chloride composites. Construction and Building Materials, 2022, 320, 126203.                                                               | 7.2  | 11        |
| 15 | Interface Bonding Properties and Mechanism of Poplar Board-Veneered Wood Fiber/Polypropylene<br>Composites with Chlorinated Polypropylene Films as an Intermediate Layer. Langmuir, 2019, 35,<br>13934-13941.                                | 3.5  | 10        |
| 16 | Role of Wood Fibers in Tuning Dynamic Rheology, Non-Isothermal Crystallization, and Microcellular<br>Structure of Polypropylene Foams. Materials, 2019, 12, 106.                                                                             | 2.9  | 10        |
| 17 | Increased expansion ratio, cell density, and compression strength of microcellular poly(lactic acid)<br>foams via lignin graft poly(lactic acid) as a biobased nucleating agent. Polymers for Advanced<br>Technologies, 2020, 31, 2239-2249. | 3.2  | 10        |
| 18 | Fabrication of long bamboo fiber-reinforced thermoplastic composite by extrusion and improvement of its properties. Industrial Crops and Products, 2021, 173, 114120.                                                                        | 5.2  | 10        |

YONGMING SONG

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stretchable, sensitive, and environment-tolerant ionic conductive organohydrogel reinforced with cellulose nanofibers for human motion monitoring. Cellulose, 2022, 29, 1897-1909.                                                   | 4.9 | 10        |
| 20 | Improvement in compatibility and mechanical properties of modified wood fiber/polypropylene<br>composites. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2008, 3,<br>243-247.                     | 0.2 | 9         |
| 21 | Effects of chemical modification of wood flour on the rheological properties of highâ€density polyethylene blends. Journal of Applied Polymer Science, 2014, 131, .                                                                  | 2.6 | 9         |
| 22 | Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender. Materials, 2017, 10, 999.                                                                                          | 2.9 | 9         |
| 23 | Enhancing the flame retardancy and mechanical properties of veneered wood flour/polyvinyl chloride composites. Polymer Composites, 2020, 41, 848-857.                                                                                | 4.6 | 9         |
| 24 | Simultaneously improving the toughness and stiffness of wood flour/polypropylene composites using elastomer A669/talcum blends. Polymer Composites, 2019, 40, 1335-1341.                                                             | 4.6 | 7         |
| 25 | Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent. Journal of Forestry Research, 2016, 27, 949-958.                                                               | 3.6 | 6         |
| 26 | Impact of lithium chloride on the performance of wood fiber reinforced polyamide 6/highâ€density<br>polyethylene blend composites. Polymer Composites, 2019, 40, 4608-4618.                                                          | 4.6 | 6         |
| 27 | Effect of nano <scp>TiO<sub>2</sub></scp> on the cellular structure and mechanical properties of wood flour/polypropylene composite foams via moldâ€opening foam injection molding. Journal of Applied Polymer Science, 2022, 139, . | 2.6 | 5         |
| 28 | Preparation and characterization of woodâ€fiberâ€reinforced polyamide 6–polypropylene blend<br>composites. Journal of Applied Polymer Science, 2019, 136, 47413.                                                                     | 2.6 | 4         |
| 29 | Reinforcement of wood flour/HDPE composite with a copolyester of <i>p</i> â€hydroxy benzoic acid and<br>2â€hydroxyâ€6â€naphthoic acid. Journal of Applied Polymer Science, 2019, 136, 47338.                                         | 2.6 | 2         |
| 30 | Nonlinear tensile behavior of cotton fabric reinforced polypropylene composites. Journal of Applied<br>Polymer Science, 2021, 138, 49780.                                                                                            | 2.6 | 0         |