Giuseppe Fiermonte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5633150/publications.pdf

Version: 2024-02-01

145106 150775 4,217 59 33 59 citations g-index h-index papers 62 62 62 4886 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Drosophila melanogaster Uncoupling Protein-4A (UCP4A) Catalyzes a Unidirectional Transport of Aspartate. International Journal of Molecular Sciences, 2022, 23, 1020.	1.8	12
2	Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Transporters and New Therapeutic Perspectives. Cancers, 2022, 14, 245.	1.7	12
3	Mitochondrial transport and metabolism of the vitamin Bâ€derived cofactors thiamine pyrophosphate, coenzyme A, <scp>FAD</scp> and <scp>NAD</scp> ⁺ , and related diseases: A review. IUBMB Life, 2022, 74, 592-617.	1.5	19
4	The mitochondrial aspartate/glutamate carrier (AGC or Aralar1) isoforms in D. melanogaster: biochemical characterization, gene structure, and evolutionary analysis. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129854.	1.1	9
5	An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules, 2021, 11, 1633.	1.8	6
6	Mitochondrial carriers of <i>UstilagoÂmaydis</i> and <i>AspergillusÂterreus</i> involved in itaconate production: same physiological role but different biochemical features. FEBS Letters, 2020, 594, 728-739.	1.3	9
7	Cloning, Purification, and Characterization of the Catalytic C-Terminal Domain of the Human 3-Hydroxy-3-methyl glutaryl-CoA Reductase: An Effective, Fast, and Easy Method for Testing Hypocholesterolemic Compounds. Molecular Biotechnology, 2020, 62, 119-131.	1.3	11
8	KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth. Nature Metabolism, 2020, 2, 1373-1381.	5.1	62
9	Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. International Journal of Molecular Sciences, 2020, 21, 6052.	1.8	16
10	CUGC for hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome. European Journal of Human Genetics, 2020, 28, 982-987.	1.4	3
11	The human uncoupling proteins 5 and 6 (UCP5/SLC25A14 and UCP6/SLC25A30) transport sulfur oxyanions, phosphate and dicarboxylates. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 724-733.	0.5	35
12	ISCA1 mutation in a patient with infantile-onset leukodystrophy causes defects in mitochondrial [4Fe–4S] proteins. Human Molecular Genetics, 2018, 27, 3650-3650.	1.4	6
13	ISCA1 mutation in a patient with infantile-onset leukodystrophy causes defects in mitochondrial [4Fe–4S] proteins. Human Molecular Genetics, 2018, 27, 2739-2754.	1.4	25
14	Functional characterization of the partially purified Sac1p independent adenine nucleotide transport system (ANTS) from yeast endoplasmic reticulum. Journal of Biochemistry, 2018, 164, 313-322.	0.9	16
15	Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits proliferation and N-acetylaspartate synthesis in Neuro2A cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1422-1435.	1.8	22
16	Novel Hypoglycemia Phenotype in Congenital Hyperinsulinism Due to Dominant Mutations of Uncoupling Protein 2. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 942-949.	1.8	36
17	Biochemical characterization of a new mitochondrial transporter of dephosphocoenzyme A in Drosophila melanogaster. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 137-146.	0.5	33
18	Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes. Journal of Neurology, 2017, 264, 102-111.	1.8	38

#	Article	IF	CITATIONS
19	New insights about the structural rearrangements required for substrate translocation in the bovine mitochondrial oxoglutarate carrier. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1473-1480.	1.1	18
20	The complementary and divergent roles of uncoupling proteins 1 and 3 in thermoregulation. Journal of Physiology, 2016, 594, 7455-7464.	1.3	51
21	The hyperornithinemia–hyperammonemia-homocitrullinuria syndrome. Orphanet Journal of Rare Diseases, 2015, 10, 29.	1.2	65
22	The Human Gene SLC25A29, of Solute Carrier Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids. Journal of Biological Chemistry, 2014, 289, 13374-13384.	1.6	72
23	Riboflavin responsive mitochondrial myopathy is a new phenotype of dihydrolipoamide dehydrogenase deficiency. The chaperon-like effect of vitamin B2. Mitochondrion, 2014, 18, 49-57.	1.6	39
24	UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 960-965.	3.3	322
25	The mitochondrial oxoglutarate carrier: from identification to mechanism. Journal of Bioenergetics and Biomembranes, 2013, 45, 1-13.	1.0	40
26	A new Caucasian case of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD): A clinical, molecular, and functional study. Molecular Genetics and Metabolism, 2011, 104, 501-506.	0.5	32
27	MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nature Cell Biology, 2010, 12, 553-562.	4.6	154
28	Molecular Identification and Functional Characterization of Arabidopsis thaliana Mitochondrial and Chloroplastic NAD+ Carrier Proteins. Journal of Biological Chemistry, 2009, 284, 31249-31259.	1.6	151
29	A Novel Member of Solute Carrier Family 25 (SLC25A42) Is a Transporter of Coenzyme A and Adenosine 3′,5′-Diphosphate in Human Mitochondria. Journal of Biological Chemistry, 2009, 284, 18152-18159.	1.6	134
30	Identification of novel mutations in the <i>SLC25A15</i> gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: A clinical, molecular, and functional study. Human Mutation, 2009, 30, 741-748.	1.1	57
31	Mutations in the mitochondrial glutamate carrier <i>SLC25A22</i> in neonatal epileptic encephalopathy with suppression bursts. Clinical Genetics, 2009, 76, 188-194.	1.0	105
32	Citrin deficiency, a perplexing global disorder. Molecular Genetics and Metabolism, 2009, 96, 44-49.	0.5	81
33	An Adult with Type 2 Citrullinemia Presenting in Europe. New England Journal of Medicine, 2008, 358, 1408-1409.	13.9	26
34	Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15927-15932.	3.3	147
35	Transgenic expression of the deoxynucleotide carrier causes mitochondrial damage that is enhanced by NRTIs for AIDS. Laboratory Investigation, 2005, 85, 972-981.	1.7	33
36	Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy. American Journal of Human Genetics, 2005, 76, 334-339.	2.6	149

#	Article	IF	Citations
37	Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Biochemical Journal, 2004, 379, 183-190.	1.7	137
38	Identification of the Mitochondrial ATP-Mg/Pi Transporter. Journal of Biological Chemistry, 2004, 279, 30722-30730.	1.6	193
39	Recombinant M protein-based ELISA test for detection of antibodies to canine coronavirus. Journal of Virological Methods, 2003, 109, 139-142.	1.0	20
40	Recombinant Expression of the Ca2+-sensitive Aspartate/Glutamate Carrier Increases Mitochondrial ATP Production in Agonist-stimulated Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2003, 278, 38686-38692.	1.6	138
41	The Mitochondrial Ornithine Transporter. Journal of Biological Chemistry, 2003, 278, 32778-32783.	1.6	117
42	Identification of the Mitochondrial Glutamate Transporter. Journal of Biological Chemistry, 2002, 277, 19289-19294.	1.6	175
43	Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nature Genetics, 2002, 32, 175-179.	9.4	141
44	Genomic organization and mapping of the gene (SLC25A19) encoding the human mitochondrial deoxynucleotide carrier (DNC). Cytogenetic and Genome Research, 2001, 93, 40-42.	0.6	9
45	Identification of the Human Mitochondrial Oxodicarboxylate Carrier. Journal of Biological Chemistry, 2001, 276, 8225-8230.	1.6	103
46	The human mitochondrial deoxynucleotide carrier and its role in the toxicity of nucleoside antivirals. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2284-2288.	3.3	183
47	Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. Journal of Bioenergetics and Biomembranes, 2000, 32, 67-77.	1.0	84
48	Identification and functions of new transporters in yeast mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1459, 363-369.	0.5	90
49	Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier family. Biochemical Journal, 1999, 344, 953.	1.7	13
50	Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier family. Biochemical Journal, 1999, 344, 953-960.	1.7	47
51	Assignment <footref rid="foot01">¹</footref> of the human dicarboxylate carrier gene (DIC) to chromosome 17 band 17q25.3. Cytogenetic and Genome Research, 1998, 83, 238-239.	0.6	4
52	The Sequence, Bacterial Expression, and Functional Reconstitution of the Rat Mitochondrial Dicarboxylate Transporter Cloned via Distant Homologs in Yeast and Caenorhabditis elegans. Journal of Biological Chemistry, 1998, 273, 24754-24759.	1.6	121
53	Expression in Escherichia coli, Functional Characterization, and Tissue Distribution of Isoforms A and B of the Phosphate Carrier from Bovine Mitochondria. Journal of Biological Chemistry, 1998, 273, 22782-22787.	1.6	130
54	Mitochondrial metabolite transporters. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1275, 127-132.	0.5	114

#	Article	IF	CITATIONS
55	Tissue-specific expression of the two isoforms of the mitochondrial phosphate carrier in bovine tissues. FEBS Letters, 1996, 399, 95-98.	1.3	39
56	Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers. Journal of Bioenergetics and Biomembranes, 1993, 25, 493-501.	1.0	60
57	Abundant bacterial expression and reconstitution of an intrinsic membrane-transport protein from bovine mitochondria. Biochemical Journal, 1993, 294, 293-299.	1.7	203
58	Sequence and pattern of expression of a bovine homologue of a human mitochondrial transport protein associated with Grave's disease. DNA Sequence, 1992, 3, 71-78.	0.7	22
59	Nucleotide sequence of a human heart cDNA encoding the mitochondrial phosphate carrier. DNA Sequence, 1991, 2, 133-135.	0.7	28