
Toru Noguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5632617/publications.pdf Version: 2024-02-01

Тори Мосисни

#	Article	IF	CITATIONS
1	Nanocellulose/polyethylene nanocomposite sheets prepared from an oven-dried nanocellulose by elastic kneading. Composites Science and Technology, 2021, 207, 108734.	3.8	17
2	Cellulose nanofiber-reinforced rubber composites prepared by TEMPO-functionalization and elastic kneading. Composites Science and Technology, 2021, 210, 108815.	3.8	16
3	Celluloseâ€Nanofiberâ€Reinforced Rubber Composites with Resorcinol Resin Prepared by Elastic Kneading. Macromolecular Materials and Engineering, 2021, 306, 2100483.	1.7	5
4	Preparation of highâ€performance carbon nanotube/polyamide composite materials by elastic highâ€shear kneading and improvement of properties by induction heating treatment. Journal of Applied Polymer Science, 2021, 138, 50512.	1.3	4
5	Cellulose nanofiber/elastomer composites with high tensile strength, modulus, toughness, and thermal stability prepared by high-shear kneading. Composites Science and Technology, 2020, 188, 108005.	3.8	50
6	New Insights in the Natural Organic Matter Fouling Mechanism of Polyamide and Nanocomposite Multiwalled Carbon Nanotubes-Polyamide Membranes. Environmental Science & Technology, 2019, 53, 6255-6263.	4.6	38
7	Surface-hydrophobized TEMPO-nanocellulose/rubber composite films prepared in heterogeneous and homogeneous systems. Cellulose, 2019, 26, 463-473.	2.4	29
8	Counterion design of TEMPO-nanocellulose used as filler to improve properties of hydrogenated acrylonitrile-butadiene matrix. Composites Science and Technology, 2018, 167, 339-345.	3.8	27
9	Antiorganic Fouling and Low-Protein Adhesion on Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposite. ACS Applied Materials & Interfaces, 2017, 9, 32192-32201.	4.0	36
10	Development of high-performance resin nanocomposites by resin cellulation using multi-walled carbon nanotubes. Composites Part B: Engineering, 2016, 91, 422-430.	5.9	5
11	High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Scientific Reports, 2015, 5, 13562.	1.6	101
12	Improvement in characteristics of natural rubber nanocomposite by surface modification of multi-walled carbon nanotubes. Journal of Physics and Chemistry of Solids, 2015, 80, 84-90.	1.9	12
13	Elucidation of the Reinforcing Mechanism in Carbon Nanotube/Rubber Nanocomposites. ACS Nano, 2011, 5, 3858-3866.	7.3	117
14	Carbon nanotube enables quantum leap in oil recovery. Materials Research Bulletin, 2011, 46, 1480-1484.	2.7	19
15	Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer, 2010, 51, 2455-2459.	1.8	58
16	Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping. Carbon, 2010, 48, 3708-3714.	5.4	50
17	High-Performance Rubber Sealant for Preventing Water Leaks. Industrial & Engineering Chemistry Research, 2010, 49, 9798-9802.	1.8	12
18	Extremeâ€Performance Rubber Nanocomposites for Probing and Excavating Deep Oil Resources Using Multiâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2008, 18, 3403-3409.	7.8	112

#	Article	IF	CITATIONS
19	Carbon Nanotube/Aluminium Composites with Uniform Dispersion. Materials Transactions, 2004, 45, 602-604.	0.4	211
20	Cellulose nanofibril/polypropylene composites prepared under elastic kneading conditions. Cellulose, 0, , .	2.4	1