
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/563250/publications.pdf Version: 2024-02-01

IFAN DINSON

#	Article	IF	CITATIONS
1	SERS tags derived from silver nanoparticles and aryl diazonium salts for cell Raman imaging. Nanoscale, 2022, 14, 1452-1458.	2.8	4
2	Examining the Role of Aryldiazonium Salts in Surface Electroinitiated Polymerization. Langmuir, 2022, 38, 4979-4995.	1.6	5
3	Covalent sizing surface modification as a route to improved interfacial adhesion in carbon fibre-epoxy composites. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106147.	3.8	36
4	Using redox active molecules to build multilayered architecture on carbon fibers and the effect on adhesion in epoxy composites. Composites Science and Technology, 2021, 202, 108564.	3.8	13
5	Efficient construction of a redox responsive thin polymer layer on glassy carbon and gold surfaces for voltage-gated delivery applications. Materials Advances, 2021, 2, 2358-2365.	2.6	6
6	Surface functionalization of nanomaterials by aryl diazonium salts for biomedical sciences. Advances in Colloid and Interface Science, 2021, 294, 102479.	7.0	20
7	Electrografting and Langmuir–Blodgett: Covalently Bound Nanometer-Thick Ordered Films on Graphite. Langmuir, 2021, 37, 12539-12547.	1.6	1
8	Surface modification of materials: Electrografting of organic films. Current Opinion in Electrochemistry, 2020, 24, 44-48.	2.5	17
9	Simultaneous Photografting of Two Organic Groups on a Gold Surface by using Arylazo Sulfones as Single Precursors. Langmuir, 2020, 36, 2786-2793.	1.6	14
10	From Langmuir–Blodgett to Grafted Films. Langmuir, 2020, 36, 2534-2542.	1.6	10
11	Grafting of Diazonium Salts on Surfaces: Application to Biosensors. Biosensors, 2020, 10, 4.	2.3	102
12	Electrografting of methylamine through C–H activation or oxidation to give highly aminated surfaces. Electrochimica Acta, 2020, 345, 136170.	2.6	6
13	Expanding the Scope of Surface Grafted Polymers Using Electroinitiated Polymerization. Langmuir, 2020, 36, 7217-7226.	1.6	20
14	Fiber with Butterfly Wings: Creating Colored Carbon Fibers with Increased Strength, Adhesion, and Reversible Malleability. ACS Applied Materials & Interfaces, 2019, 11, 41617-41625.	4.0	43
15	Simultaneously increasing the hydrophobicity and interfacial adhesion of carbon fibres: a simple pathway to install passive functionality into composites. Journal of Materials Chemistry A, 2019, 7, 13483-13494.	5.2	43
16	Indirect electrografting of aryl iodides. Electrochemistry Communications, 2019, 98, 119-123.	2.3	6
17	Micro-patterned anti-icing coatings with dual hydrophobic/hydrophilic properties. Journal of Materials Chemistry A, 2018, 6, 19353-19357.	5.2	30
18	Alkyl-Modified Gold Surfaces: Characterization of the Au–C Bond. Langmuir, 2018, 34, 11264-11271.	1.6	26

#	Article	IF	CITATIONS
19	Patterning Surfaces through Photografting of Iodonium Salts. Journal of Physical Chemistry C, 2018, 122, 19722-19730.	1.5	14
20	Diazonium salt chemistry for the design of nano-textured anti-icing surfaces. Chemical Communications, 2018, 54, 8983-8986.	2.2	16
21	Efficient Covalent Modification of Multiwalled Carbon Nanotubes with Diazotized Dyes in Water at Room Temperature. Langmuir, 2017, 33, 6677-6690.	1.6	28
22	Electrografting of diazonium salts: A kinetics study. Electrochemistry Communications, 2017, 81, 120-123.	2.3	26
23	Some Theoretical and Experimental Insights on the Mechanistic Routes Leading to the Spontaneous Grafting of Gold Surfaces by Diazonium Salts. Langmuir, 2017, 33, 8730-8738.	1.6	41
24	Surface functionalisation of polymers. Chemical Society Reviews, 2017, 46, 5701-5713.	18.7	128
25	Surface modification by electrochemical reduction of alkyldiazonium salts. Electrochemistry Communications, 2016, 68, 5-9.	2.3	9
26	Reversible Trapping of Functional Molecules at Interfaces Using Diazonium Salts Chemistry. Langmuir, 2016, 32, 9714-9721.	1.6	7
27	Grafting of an aluminium surface with organic layers. RSC Advances, 2016, 6, 78369-78377.	1.7	18
28	Surface Functionalization of Metals by Alkyl Chains through a Radical Crossover Reaction. Langmuir, 2016, 32, 6335-6342.	1.6	12
29	Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine. Applied Catalysis B: Environmental, 2016, 199, 331-341.	10.8	212
30	Surface Modification of Polymers by Reaction of Alkyl Radicals. Langmuir, 2016, 32, 512-518.	1.6	19
31	Surface Techniques. , 2015, , 191-204.		0
32	Electrode Surface Modification Using Diazonium Salts. Electroanalytical Chemistry, A Series of Advances, 2015, , 115-224.	1.7	23
33	Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	17
34	Powerful Surface Chemistry Approach for the Grafting of Alkyl Multilayers on Aluminum Nanoparticles. Langmuir, 2015, 31, 6092-6098.	1.6	9
35	One-Step Formation of Bifunctionnal Aryl/Alkyl Grafted Films on Conducting Surfaces by the Reduction of Diazonium Salts in the Presence of Alkyl Iodides. Langmuir, 2015, 31, 5406-5415.	1.6	16
36	Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chemical Engineering Journal, 2015, 262, 286-294.	6.6	317

#	Article	IF	CITATIONS
37	Surface modification of polymers by reduction of diazonium salts: polymethylmethacrylate as an example. Journal of Materials Chemistry C, 2014, 2, 356-363.	2.7	59
38	Electrografting of Alkyl Films at Low Driving Force by Diverting the Reactivity of Aryl Radicals Derived from Diazonium Salts. Langmuir, 2014, 30, 13907-13913.	1.6	23
39	Control of the Grafting of Hybrid Polyoxometalates on Metal and Carbon Surfaces: Toward Submonolayers. Langmuir, 2014, 30, 2287-2296.	1.6	39
40	Tailoring the Surface Chemistry of Gold Nanorods through Au–C/Ag–C Covalent Bonds Using Aryl Diazonium Salts. Journal of Physical Chemistry C, 2014, 118, 19098-19105.	1.5	54
41	Electrografting of Diazoniumâ€Functionalized Polyoxometalates: Synthesis, Immobilisation and Electronâ€Transfer Characterisation from Glassy Carbon. Chemistry - A European Journal, 2013, 19, 13838-13846.	1.7	42
42	Sensitized Photografting of Diazonium Salts by Visible Light Chemistry of Materials, 2013, 25, 90-97.	3.2	61
43	Regular poly(para-phenylene) films bound to gold surfaces through the electrochemical reduction of diazonium salts followed by electropolymerization in an ionic liquid. Electrochimica Acta, 2013, 106, 172-180.	2.6	25
44	Functionalization of Aluminum Nanoparticles Using a Combination of Aryl Diazonium Salt Chemistry and Iniferter Method. Journal of Physical Chemistry C, 2013, 117, 26000-26006.	1.5	56
45	Photochemical grafting of diazonium salts on metals. Chemical Communications, 2011, 47, 12631.	2.2	40
46	Photochemical Grafting and Patterning of Metallic Surfaces by Organic Layers Derived from Acetonitrile. Chemistry of Materials, 2011, 23, 3449-3459.	3.2	9
47	Electrografting: a powerful method for surface modification. Chemical Society Reviews, 2011, 40, 3995.	18.7	841
48	Preparation of Water-Soluble Magnetic Nanocrystals Using Aryl Diazonium Salt Chemistry. Journal of the American Chemical Society, 2011, 133, 1646-1649.	6.6	69
49	Physisorption vs grafting of aryldiazonium salts onto iron: A corrosion study. Electrochimica Acta, 2011, 56, 10762-10766.	2.6	24
50	Electrografting of the cyanomethyl radical onto carbon and metal surfaces. Electrochimica Acta, 2011, 56, 1476-1484.	2.6	11
51	Uptake of copper ions by carbon fiber/polymer hybrids prepared by tandem diazonium salt chemistry and in situ atom transfer radical polymerization. Carbon, 2010, 48, 2106-2111.	5.4	119
52	Indirect Grafting of Acetonitrile-Derived Films on Metallic Substrates. Chemistry of Materials, 2010, 22, 2962-2969.	3.2	27
53	Growth of carbon nanotubes through selective deposition of nanoparticles. Journal of Materials Chemistry, 2010, 20, 7197.	6.7	2
54	CARBonCHIP: Carbon Nanotubes Technology on Silicon Integrated Circuits; Some Key Results. ECS Transactions, 2009, 25, 63-71.	0.3	0

#	Article	IF	CITATIONS
55	Localized Attachment of Carbon Nanotubes in Microelectronic Structures. Advanced Materials, 2009, 21, 4404-4408.	11.1	18
56	Spontaneous grafting of diazoates on metals. Electrochimica Acta, 2009, 54, 2164-2170.	2.6	48
57	Steric Effects in the Reaction of Aryl Radicals on Surfaces. Langmuir, 2009, 25, 286-293.	1.6	121
58	Lowering interfacial chemical reactivity of oxide materials for lithium batteries. A molecular grafting approach. Journal of Materials Chemistry, 2009, 19, 4771.	6.7	25
59	Electroless ultrasonic functionalization of diamond nanoparticles using aryl diazonium salts. Diamond and Related Materials, 2008, 17, 1881-1887.	1.8	57
60	Sterically Hindered Diazonium Salts for the Grafting of a Monolayer on Metals. Journal of the American Chemical Society, 2008, 130, 8576-8577.	6.6	215
61	Electro- and Photografting of Carbon or Metal Surfaces by Alkyl Groups. Journal of Physical Chemistry C, 2008, 112, 18559-18565.	1.5	42
62	Surface Modification of Conducting Substrates. Existence of Azo Bonds in the Structure of Organic Layers Obtained from Diazonium Salts. Chemistry of Materials, 2007, 19, 4570-4575.	3.2	230
63	Grafting densely-packed poly(n-butyl methacrylate) chains from an iron substrate by aryl diazonium surface-initiated ATRP: XPS monitoring. Surface Science, 2007, 601, 2357-2366.	0.8	79
64	Surface Properties, Porosity, Chemical and Electrochemical Applications. , 2006, , 495-549.		14
65	Spontaneous Attachment of Amines to Carbon and Metallic Surfaces. Journal of Physical Chemistry B, 2006, 110, 19521-19529.	1.2	135
66	Formation of Polyphenylene Films on Metal Electrodes by Electrochemical Reduction of Benzenediazonium Salts. Chemistry of Materials, 2006, 18, 2021-2029.	3.2	153
67	Growth of polymer brushes by atom transfer radical polymerization on glassy carbon modified by electro-grafted initiators based on aryl diazonium salts. Surface and Interface Analysis, 2006, 38, 565-568.	0.8	35
68	Study of the spontaneous formation of organic layers on carbon and metal surfaces from diazonium salts. Surface Science, 2006, 600, 4801-4812.	0.8	132
69	Spontaneous grafting of iron surfaces by reduction of aryldiazonium salts in acidic water. Applications to the inhibition of iron corrosion. , 2006, , 697-702.		4
70	Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chemical Society Reviews, 2005, 34, 429.	18.7	1,057
71	Attachment of Organic Layers to Conductive or Semiconductive Surfaces by Reduction of Diazonium Salts. ChemInform, 2005, 36, no.	0.1	1
72	Time-of-Flight Secondary Ion Mass Spectroscopy Characterization of the Covalent Bonding between a Carbon Surface and Aryl Groups. Langmuir, 2005, 21, 280-286.	1.6	168

#	Article	IF	CITATIONS
73	Grafting of Nitrophenyl Groups on Carbon and Metallic Surfaces without Electrochemical Induction. Chemistry of Materials, 2005, 17, 491-501.	3.2	265
74	Novel Approach for Metallic Surface-Initiated Atom Transfer Radical Polymerization Using Electrografted Initiators Based on Aryl Diazonium Salts. Langmuir, 2005, 21, 4686-4694.	1.6	99
75	Spontaneous Grafting of Iron Surfaces by Reduction of Aryldiazonium Salts in Acidic or Neutral Aqueous Solution. Application to the Protection of Iron against Corrosion. Chemistry of Materials, 2005, 17, 3968-3975.	3.2	179
76	Polyphenols Deriving from Chalcones:  Investigations of Redox Activities. Journal of Physical Chemistry B, 2005, 109, 23720-23729.	1.2	39
77	Electrochemical functionalization of nanotube films: growth of aryl chains on single-walled carbon nanotubes. New Journal of Chemistry, 2004, 28, 302.	1.4	88
78	Electrochemical Oxidation of Aliphatic Amines and Their Attachment to Carbon and Metal Surfaces. Langmuir, 2004, 20, 8243-8253.	1.6	408
79	X-ray Photoelectron Spectroscopy Evidence for the Covalent Bond between an Iron Surface and Aryl Groups Attached by the Electrochemical Reduction of Diazonium Salts. Langmuir, 2003, 19, 6333-6335.	1.6	159
80	Organic Layers Bonded to Industrial, Coinage, and Noble Metals through Electrochemical Reduction of Aryldiazonium Salts. Chemistry of Materials, 2003, 15, 3450-3462.	3.2	262
81	The Standard Redox Potential of the Phenyl Radical/Anion Couple. Journal of the American Chemical Society, 2003, 125, 14801-14806.	6.6	200
82	Attachment of Polymers to Organic Moieties Covalently Bonded to Iron Surfaces. Chemistry of Materials, 2002, 14, 4576-4585.	3.2	77
83	The Electrochemical Reduction of Diazonium Salts on Iron Electrodes. The Formation of Covalently Bonded Organic Layers and Their Effect on Corrosion. Chemistry of Materials, 2002, 14, 392-400.	3.2	147
84	Surface-Modified Carbon Felts:Â Possible Supports for Combinatorial Chemistry. Journal of Organic Chemistry, 2002, 67, 8513-8518.	1.7	62
85	Free Radical Chemistry of Flavan-3-ols:Â Determination of Thermodynamic Parameters and of Kinetic Reactivity from Short (ns) to Long (ms) Time Scale. Journal of the American Chemical Society, 2002, 124, 14027-14038.	6.6	88
86	Covalent Modification of Iron Surfaces by Electrochemical Reduction of Aryldiazonium Salts. Journal of the American Chemical Society, 2001, 123, 4541-4549.	6.6	237
87	Electrochemical Attachment of Organic Groups to Carbon Felt Surfaces. Langmuir, 2001, 17, 7102-7106.	1.6	81
88	Electrochemical Oxidation ofÏf-Complex-Type Intermediates in Aromatic Nucleophilic Substitutions. Chemistry - A European Journal, 2001, 7, 1712-1719.	1.7	44
89	Structural characterization of organic monolayers on Siã€^111〉 from capacitance measurements. Electrochimica Acta, 2000, 45, 3241-3248.	2.6	101
90	Selective protection of catechin gives access to the intrinsic reactivity of the two phenol rings during H-abstraction and photo-oxidation. Tetrahedron Letters, 2000, 41, 5847-5851.	0.7	17

#	Article	IF	CITATIONS
91	Degradation of chlorophenoxyacid herbicides in aqueous media, using a novel electrochemical methodâ€. Pest Management Science, 1999, 55, 558-562.	0.7	81
92	The electrochemical oxidation of Riluzole, a neuroprotective drug: comparison with the reaction with oxygen derived radicals. Journal of the Chemical Society Perkin Transactions II, 1999, , 619-622.	0.9	10
93	Hydroxylation of aromatic drugs by the electro-Fenton method. Formation and identification of the metabolites of Riluzole. New Journal of Chemistry, 1999, 23, 793-794.	1.4	27
94	Isomerization of Azo Compounds. Cleavage Recombination Mechanism of Azosulfides. Journal of Physical Chemistry A, 1999, 103, 5490-5500.	1.1	10
95	Organic monolayers on Si(111) by electrochemical method. Electrochimica Acta, 1998, 43, 2791-2798.	2.6	184
96	Chemistry in electrospray mist: red-ox reactivity of nitrohalogenated aromatics during negative ion production. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1998, 1, 449-456.	0.1	1
97	Electrochemical Formation of Close-Packed Phenyl Layers on Si(111). Journal of Physical Chemistry B, 1997, 101, 2415-2420.	1.2	316
98	Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts. Journal of the American Chemical Society, 1997, 119, 201-207.	6.6	978
99	The electrocatalytic stereomutation of arylazosulfides. A spectroelectrochemical investigation. Journal of Electroanalytical Chemistry, 1997, 422, 99-114.	1.9	9
100	Electrochemically induced SRN 1 substitution of fluorinated aryl halides. Application to the synthesis of fluorinated-aryl heterocycles. Electrochimica Acta, 1997, 42, 2049-2055.	2.6	18
101	A Convenient Synthesis of Perfluoroalkylated and Fluorinated-Aryl Nitrogen Bases by Electrochemically Induced SRN1 Substitution. Journal of Organic Chemistry, 1996, 61, 1331-1340.	1.7	54
102	Ionâ^'Radical Complexes and SRN1-like Reactions in the Gas-Phase. A Negative-Ion Mass Spectrometric Investigation of Arylazo Sulfides. Journal of Organic Chemistry, 1996, 61, 929-934.	1.7	9
103	Molecular Grafting on Si(111) Surfaces: An Electrochemical Approach. Materials Research Society Symposia Proceedings, 1996, 451, 185.	0.1	16
104	Oxidation of caffeic acid and related hydroxycinnamic acids. Journal of Electroanalytical Chemistry, 1996, 405, 169-176.	1.9	125
105	Nonchain Processes in Nucleophilic Substitutions Triggered by Electron Transfer (SRN1). Photochemical and Electrochemical Induction of the Substitution of 1-lodoadamantane by Arenethiolate Ions. Journal of the American Chemical Society, 1995, 117, 11488-11498.	6.6	37
106	Hydroxylation by Electrochemically Generated OH.bul. Radicals. Mono- and Polyhydroxylation of Benzoic Acid: Products and Isomer Distribution. The Journal of Physical Chemistry, 1995, 99, 13948-13954.	2.9	142
107	Oxidative Dimerization of Phenolic Aldehydes Related to Lignin Formation. The Journal of Physical Chemistry, 1994, 98, 2641-2645.	2.9	14
108	Mechanism of oxidative coupling of coniferyl alcohol. Phytochemistry, 1994, 36, 1013-1020.	1.4	24

#	Article	IF	CITATIONS
109	Dissociative Electron Transfer to Dihaloalkanes. Electrochemical Reduction of 1,3-Dihaloadamantanes, 1,4-Dihalobicyclo[2.2.2]octanes, and 1,3-Dihalobicyclo[1.1.1]pentanes. Journal of the American Chemical Society, 1994, 116, 4653-4659.	6.6	39
110	Multiple reaction pathways for the oxidation of 2,6-diphenylphenolates. Journal of Electroanalytical Chemistry, 1993, 362, 257-265.	1.9	13
111	Electrochemical behaviour of syringaldazine, a colorimetric redox reagent. Journal of Electroanalytical Chemistry, 1993, 353, 225-235.	1.9	11
112	A new convenient synthesis of 5-aryl uracils using SRN1 aromatic nucleophilic substitution. Tetrahedron Letters, 1993, 34, 3409-3412.	0.7	17
113	Short time-scale observation of an electrospray current. Rapid Communications in Mass Spectrometry, 1993, 7, 707-710.	0.7	20
114	Determination of formal potentials of chemically unstable redox couples by second-harmonic alternating current voltammetry and cyclic voltammetry. Application to the oxidation of thiophenoxide ions. Journal of the American Chemical Society, 1993, 115, 7783-7788.	6.6	44
115	Very fast, in-cage, recombination of a radical with a nucleophile. Arylazo sulfides in SRN1 aromatic nucleophilic substitutions. Journal of Organic Chemistry, 1993, 58, 2670-2677.	1.7	24
116	Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. Journal of the American Chemical Society, 1992, 114, 5883-5884.	6.6	947
117	Perfluoroalkylation of purine and pyrimidine bases by electrochemically induced SRN1 substitution Tetrahedron Letters, 1992, 33, 7351-7354.	0.7	15
118	One-electron redox potentials for the oxidation of coniferyl alcohol and analogues. Journal of Electroanalytical Chemistry, 1992, 328, 327-331.	1.9	16
119	Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts. Journal of Electroanalytical Chemistry, 1992, 336, 113-123.	1.9	182
120	Reaction of inflammation inhibitors with chemically and electrochemically generated hydroxyl radicals. Journal of Electroanalytical Chemistry, 1992, 334, 103-109.	1.9	55
121	Aryl radicals from electrochemical reduction of aryl halides. Addition on olefins. Journal of Organic Chemistry, 1991, 56, 586-595.	1.7	41
122	Electrochemically induced nucleophilic substitution of perfluoroalkyl halides. An example of a dissociative electron-transfer-induced chemical reaction. Journal of the American Chemical Society, 1991, 113, 6872-6879.	6.6	57
123	Electrochemical and chemical reduction of furopyrazines, thienopyrazines, furoquinoxalines and thienoquinoxalines. Journal of Organic Chemistry, 1991, 56, 4840-4845.	1.7	22
124	Mediated electrochemical induction of chemical reactions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 316, 329-334.	0.3	1
125	Perfluoroalkylation of imidazoles by electrochemically induced srn1 substitution Tetrahedron Letters, 1990, 31, 1279-1282.	0.7	29
126	Outer-sphere dissociative electron transfer to organic molecules: a source of radicals or carbanions? Direct and indirect electrochemistry of perfluoroalkyl bromides and iodides. Journal of the American Chemical Society, 1990, 112, 3509-3520.	6.6	164

#	Article	IF	CITATIONS
127	Electrochemical Bonding of Amines to Carbon Fiber Surfaces Toward Improved Carbonâ€Epoxy Composites. Journal of the Electrochemical Society, 1990, 137, 1757-1764.	1.3	292
128	Electrochemically induced SRN1 aromatic nucleophilic substitution. Monoanions of β-dicarbonyl and β-cyanocarbonyl compounds as nucleophiles. Tetrahedron Letters, 1989, 30, 1373-1376.	0.7	18
129	Addition of aryl radicals generated from electrochemical reduction of aryl halides on carbon-carbon double bonds Tetrahedron Letters, 1988, 29, 639-642.	0.7	16
130	Fast sweep cyclic voltammetry at ultra-microelectrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 243, 321-335.	0.3	137
131	Preparation, chemical and electrochemical reduction of pyrido[2,3- <i>b</i>]quinoxalines and pyrido[3,4- <i>b</i>]quinoxalines. Canadian Journal of Chemistry, 1988, 66, 1500-1505.	0.6	17
132	Electrochemically catalyzed aromatic nucleophilic substitution. Phenoxide ion as nucleophile. Journal of Organic Chemistry, 1988, 53, 1496-1504.	1.7	54
133	Phenoxide ions as nucleophiles in SRN1 aromatic nucleophilic substitution. Journal of the Chemical Society Chemical Communications, 1988, , 7-8.	2.0	21
134	Chemical and electrochemical reduction of pyrazino[2,3-g]quinoxalines and of their benzo and dibenzo derivatives; the structure of fluorindine and the formation of tetraanion. Canadian Journal of Chemistry, 1987, 65, 1619-1623.	0.6	28
135	Electrochemically induced aromatic substitution. The 2-nitropropane anion, a powerful nucleophile in SRN1 aromatic substitution. Journal of Organic Chemistry, 1986, 51, 3757-3761.	1.7	21
136	Kinetic analysis of reversible electrodimerization reactions by the combined use of double potential step chronoamperometry and linear sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 184, 1-24.	0.3	50
137	Pyridazino[3,4-b]quinoxalines and their reduced derivatives. Preparation and structure. Journal of Heterocyclic Chemistry, 1985, 22, 1519-1525.	1.4	11
138	Electrochemically induced SRN1 aromatic nucleophilic substitution. Absolute reactivities of phenyl derivatives in liquid ammonia. Journal of the American Chemical Society, 1985, 107, 4846-4853.	6.6	47
139	Nucleophile and aryl radical reactivity in SRN1 aromatic nucleophilic substitution reactions. Absolute and relative electrochemical determination. Journal of the American Chemical Society, 1985, 107, 3451-3459.	6.6	78
140	Electrochemical reduction of quinoxalino[2,3-b]quinoxaline: a revised mechanism. Canadian Journal of Chemistry, 1984, 62, 1028-1030.	0.6	3
141	Electron-transfer-induced reactions. A novel approach based on electrochemical redox catalysis. Application to aromatic nucleophilic substitutions. Journal of the American Chemical Society, 1984, 106, 6318-6321.	6.6	41
142	Electrochemical reductive carboxylation: reduction of unsaturated compounds in the presence of methyl chloroformate. Journal of Organic Chemistry, 1983, 48, 2847-2853.	1.7	17
143	Electron transfer induced reactions. Electrochemically stimulated aromatic nucleophilic substitution in organic solvents. Journal of the American Chemical Society, 1982, 104, 817-826.	6.6	50
144	Hydrogen atom transfer oxidation of primary and secondary alcoholates into aldehydes and ketones by aromatic halides in liquid ammonia. A new electrochemically induceable reaction. Journal of the American Chemical Society, 1982, 104, 1979-1986.	6.6	35

#	Article	IF	CITATIONS
145	Electrochemical reduction of quinoxalino[2,3-b]quinoxaline. Canadian Journal of Chemistry, 1982, 60, 2797-2803.	0.6	20
146	Are anion radicals unable to undergo radical-radical dimerization?. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 137, 143-148.	0.3	59
147	The role of water in organic electroreductive dimerizations in aprotic solvents. How general is the anion radical—water complex mechanism?. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 139, 193-197.	0.3	26
148	Electron-transfer-induced reactions. Termination steps and efficiency of the chain process in SRN1 aromatic substitutions. Journal of the American Chemical Society, 1981, 103, 6930-6937.	6.6	34
149	Structure and electrochemical behaviour of 2-nitrosoquinoxaline. Canadian Journal of Chemistry, 1981, 59, 1711-1716.	0.6	8
150	Deaminative electrochemical reduction of pyrazolo[1,5-a]pyrimidine-7-amines. Canadian Journal of Chemistry, 1981, 59, 2826-2832.	0.6	8
151	Product distribution in preparative scale electrolysis. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 123, 231-242.	0.3	38
152	Trace crossings in cyclic voltammetry and electrochemic electrochemical inducement of chemical reactions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 107, 59-74.	0.3	68
153	Current dips in polarography and cyclic voltammetry associated with electrochemical inducement of chemical reactions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 107, 75-86.	0.3	26
154	Titanium(III) chloride and electrochemical reduction of pyrazine, quinoxaline and triazine derivatives and of their salts. Journal of Heterocyclic Chemistry, 1980, 17, 1237-1240.	1.4	22
155	The solvent as hydrogen-atom donor in organic electrochemical reactions. Reduction of aromatic halides. Journal of the American Chemical Society, 1980, 102, 4120-4127.	6.6	174
156	Electrochemically induced aromatic nucleophilic substitution in liquid ammonia. Competition with electron transfer. Journal of the American Chemical Society, 1979, 101, 6012-6020.	6.6	59
157	Hydrogen atom abstraction and solvent involvement in the electrochemistry of haloaromatics. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 89, 347-361.	0.3	48
158	Electrochemically induced aromatic nucleophilic substitution. Journal of the American Chemical Society, 1978, 100, 1506-1510.	6.6	69
159	Electrochemical reduction of pyridopyrazines. Canadian Journal of Chemistry, 1978, 56, 1804-1816.	0.6	21
160	Electrolytic reduction of p-bromobenzophenone in the presence of benzenethiolate: an electrochemically catalysed aromatic nucleophilic substitution. Journal of the Chemical Society Chemical Communications, 1974, , 933-934.	2.0	39
161	Electrochemical Reduction of Pyrazines into Dihydropyrazines. Preparation of Dihydropyrazines. Canadian Journal of Chemistry, 1974, 52, 3971-3980.	0.6	33
162	The Electrochemical Reduction of Compounds with the Group. III as-Triazines. Canadian Journal of Chemistry, 1972, 50, 1581-1590.	0.6	26

#	Article	lF	CITATIONS
163	Electrolysis in Aprotic Medium of Gem-Halogeno-Nitro-Derivatives. Synthesis Of α - Dinitroderivatives. Analytical Letters, 1971, 4, 219-222.	1.0	1
164	Electrochemical reduction of compounds with A-N=C-C=N- group. I. Quinoxalines. Collection of Czechoslovak Chemical Communications, 1971, 36, 585-598.	1.0	24