Enrique Herrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5632279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression inSaccharomyces cerevisiae. , 1997, 13, 837-848.		555
2	Grx5 Is a Mitochondrial Glutaredoxin Required for the Activity of Iron/Sulfur Enzymes. Molecular Biology of the Cell, 2002, 13, 1109-1121.	0.9	430
3	Redox control and oxidative stress in yeast cells. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1217-1235.	1.1	367
4	Oxidative Stress Promotes Specific Protein Damage inSaccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 27393-27398.	1.6	319
5	Grx5 Clutaredoxin Plays a Central Role in Protection against Protein Oxidative Damage in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 8180-8190.	1.1	278
6	Cytosolic Monothiol Glutaredoxins Function in Intracellular Iron Sensing and Trafficking via Their Bound Iron-Sulfur Cluster. Cell Metabolism, 2010, 12, 373-385.	7.2	263
7	Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe–2S] clusters. EMBO Journal, 2008, 27, 1122-1133.	3.5	231
8	Monothiol glutaredoxins: a common domain for multiple functions. Cellular and Molecular Life Sciences, 2007, 64, 1518-1530.	2.4	200
9	Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. Journal of Cell Science, 2006, 119, 4554-4564.	1.2	181
10	The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug. Antimicrobial Agents and Chemotherapy, 2014, 58, 6627-6638.	1.4	158
11	Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast, 1998, 14, 1127-1138.	0.8	140
12	Regulation of the Cell Integrity Pathway by Rapamycin-sensitive TOR Function in Budding Yeast. Journal of Biological Chemistry, 2002, 277, 43495-43504.	1.6	125
13	Mitochondrial Hsp60, Resistance to Oxidative Stress, and the Labile Iron Pool Are Closely Connected in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 44531-44538.	1.6	124
14	Pkc1 and the Upstream Elements of the Cell Integrity Pathway in Saccharomyces cerevisiae, Rom2 and Mtl1, Are Required for Cellular Responses to Oxidative Stress. Journal of Biological Chemistry, 2005, 280, 9149-9159.	1.6	124
15	Biochemical Characterization of Yeast Mitochondrial Grx5 Monothiol Glutaredoxin. Journal of Biological Chemistry, 2003, 278, 25745-25751.	1.6	115
16	Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst. Microbes and Infection, 2011, 13, 457-467.	1.0	92
17	Nuclear Monothiol Glutaredoxins of Saccharomyces cerevisiae Can Function as Mitochondrial Glutaredoxins. Journal of Biological Chemistry, 2004, 279, 51923-51930.	1.6	91
18	Functional analysis of yeast gene families involved in metabolism of vitamins B1and B6. Yeast, 2002, 19, 1261-1276.	0.8	89

2

Enrique Herrero

#	Article	IF	CITATIONS
19	Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochemical Journal, 2006, 398, 187-196.	1.7	89
20	Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 39, 1022-1035.	1.2	86
21	TheAFT1 Transcriptional Factor is Differentially Required for Expression of High-Affinity Iron Uptake Genes inSaccharomyces cerevisiae. Yeast, 1997, 13, 621-637.	0.8	82
22	Heat Shock Response in Yeast Involves Changes in Both Transcription Rates and mRNA Stabilities. PLoS ONE, 2011, 6, e17272.	1.1	82
23	Arabidopsis Glutaredoxin S17 and Its Partner, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α, Contribute to Maintenance of the Shoot Apical Meristem under Long-Day Photoperiod. Plant Physiology, 2015, 167, 1643-1658.	2.3	78
24	An efficient method to isolate yeast genes causing overexpression-mediated growth arrest. Yeast, 1995, 11, 25-32.	0.8	70
25	Comprehensive Transcriptional Analysis of the Oxidative Response in Yeast. Journal of Biological Chemistry, 2008, 283, 17908-17918.	1.6	69
26	Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Letters, 2006, 580, 2273-2280.	1.3	67
27	Structure-Function Analysis of Yeast Grx5 Monothiol Glutaredoxin Defines Essential Amino Acids for the Function of the Protein. Journal of Biological Chemistry, 2002, 277, 37590-37596.	1.6	65
28	Sit4 Is Required for Proper Modulation of the Biological Functions Mediated by Pkc1 and the Cell Integrity Pathway inSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 33468-33476.	1.6	64
29	Saccharomyces cerevisiae Glutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets of Genes. Journal of Biological Chemistry, 2004, 279, 12386-12395.	1.6	60
30	<i>Saccharomyces cerevisiae</i> Grx6 and Grx7 Are Monothiol Glutaredoxins Associated with the Early Secretory Pathway. Eukaryotic Cell, 2008, 7, 1415-1426.	3.4	56
31	Modulation of plasma membrane lipid profile and microdomains by H2O2 in Saccharomyces cerevisiae. Free Radical Biology and Medicine, 2009, 46, 289-298.	1.3	49
32	Evolution and Cellular Function of Monothiol Glutaredoxins: Involvement in Iron-Sulphur Cluster Assembly. Comparative and Functional Genomics, 2004, 5, 328-341.	2.0	47
33	Cloning, functional analysis, and mitochondrial localization of <i>Trypanosoma brucei</i> monothiol glutaredoxin-1. Biological Chemistry, 2008, 389, 21-32.	1.2	42
34	A Peroxisomal Glutathione Transferase of Saccharomyces cerevisiae Is Functionally Related to Sulfur Amino Acid Metabolism. Eukaryotic Cell, 2006, 5, 1748-1759.	3.4	41
35	Selenite-induced cell death in Saccharomyces cerevisiae: protective role of glutaredoxins. Microbiology (United Kingdom), 2010, 156, 2608-2620.	0.7	41
36	Isolation of aCandida albicans gene, tightly linked toURA3, coding for a putative transcription factor that suppresses aSaccharomyces cerevisiaeaft1 mutation. Yeast, 2001, 18, 301-311.	0.8	39

ENRIQUE HERRERO

#	Article	IF	CITATIONS
37	Structural and Functional Diversity of Glutaredoxins in Yeast. Current Protein and Peptide Science, 2010, 11, 659-668.	0.7	37
38	Yeast as a model system to study metabolic impact of selenium compounds. Microbial Cell, 2015, 2, 139-149.	1.4	37
39	Evolution based on domain combinations: the case of glutaredoxins. BMC Evolutionary Biology, 2009, 9, 66.	3.2	35
40	Transcriptomic Responses of Phanerochaete chrysosporium to Oak Acetonic Extracts: Focus on a New Glutathione Transferase. Applied and Environmental Microbiology, 2014, 80, 6316-6327.	1.4	34
41	The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Molecular Microbiology, 2011, 81, 232-248.	1.2	33
42	Predictive reconstruction of the mitochondrial iron-sulfur cluster assembly metabolism. II. Role of glutaredoxin Grx5. Proteins: Structure, Function and Bioinformatics, 2004, 57, 481-492.	1.5	32
43	Glutaredoxins in fungi. Photosynthesis Research, 2006, 89, 127-140.	1.6	32
44	Metabolism of Saccharomyces cerevisiae envelope mannoproteins. Archives of Microbiology, 1982, 132, 144-148.	1.0	31
45	Down-regulation of fatty acid synthase increases the resistance of Saccharomyces cerevisiae cells to H2O2. Free Radical Biology and Medicine, 2007, 43, 1458-1465.	1.3	28
46	Predictive reconstruction of the mitochondrial iron-sulfur cluster assembly metabolism: I. The role of the protein pair ferredoxin-ferredoxin reductase (Yah1-Arh1). Proteins: Structure, Function and Bioinformatics, 2004, 56, 354-366.	1.5	24
47	Zim17/Tim15 links mitochondrial iron–sulfur cluster biosynthesis to nuclear genome stability. Nucleic Acids Research, 2011, 39, 6002-6015.	6.5	23
48	The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system. Scientific Reports, 2016, 6, 32836.	1.6	22
49	Altered intracellular calcium homeostasis and endoplasmic reticulum redox state in <i>Saccharomyces cerevisiae</i> cells lacking Grx6 glutaredoxin. Molecular Biology of the Cell, 2015, 26, 104-116.	0.9	21
50	Characterization of aCandida albicansgene encoding a putative transcriptional factor required for cell wall integrity. FEMS Microbiology Letters, 2003, 226, 159-167.	0.7	20
51	[14] Glutaredoxins and oxidative stress defense in yeast. Methods in Enzymology, 2002, 348, 136-146.	0.4	19
52	RCS1, a gene involved in controlling cell size inSaccharomyces cerevisiae. Yeast, 1991, 7, 1-14.	0.8	18
53	Evolutionary relationships between Saccharomyces cerevisiae and other fungal species as determined from genome comparisons. Revista Iberoamericana De Micologia, 2005, 22, 217-222.	0.4	17
54	The PacC-family protein Rim101 prevents selenite toxicity in Saccharomyces cerevisiae by controlling vacuolar acidification. Fungal Genetics and Biology, 2014, 71, 76-85.	0.9	17

Enrique Herrero

#	Article	IF	CITATIONS
55	Secretory pattern of a major integral mannoprotein of the yeast cell wall. Biochimica Et Biophysica Acta - General Subjects, 1987, 924, 193-203.	1.1	15
56	An electron microscopy study of wall expansion during Candida albicans yeast and mycelial growth using concanavalin A-ferritin labelling of mannoproteins. Archives of Microbiology, 1991, 156, 111-114.	1.0	15
57	Comparative genomics of yeast species: new insights into their biology. International Microbiology, 2003, 6, 183-190.	1.1	15
58	XV. Yeast sequencing reports. DNA sequence analysis of a 13 kbp fragment of the left arm of yeast chromosome XV containing seven new open reading frames. Yeast, 1995, 11, 1281-1288.	0.8	14
59	Expression of Candida albicans glutathione transferases is induced inside phagocytes and upon diverse environmental stresses. FEMS Yeast Research, 2010, 10, 422-431.	1.1	14
60	The AMPK Family Member Snf1 Protects Saccharomyces cerevisiae Cells upon Glutathione Oxidation. PLoS ONE, 2013, 8, e58283.	1.1	14
61	Biphasic modulation of fatty acid synthase by hydrogen peroxide in Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 2011, 515, 107-111.	1.4	11
62	Impaired mitochondrial Fe-S cluster biogenesis activates the DNA damage response through different signaling mediators. Journal of Cell Science, 2015, 128, 4653-65.	1.2	11
63	Role of glycosylation in the incorporation of intrinsic mannoproteins into cell walls of Saccharomyces cerevisiae. FEMS Microbiology Letters, 1989, 57, 265-268.	0.7	9
64	The plasma membrane-enriched fraction proteome response during adaptation to hydrogen peroxide in <i>Saccharomyces cerevisiae</i> . Free Radical Research, 2012, 46, 1267-1279.	1.5	9
65	Antioxidant activity of thermal or non-thermally treated strawberry and mango juices by Saccharomyces cerevisiae growth based assays. LWT - Food Science and Technology, 2016, 74, 55-61.	2.5	8
66	Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions. PLoS ONE, 2016, 11, e0148204.	1.1	8
67	Constancy of diameter through the cell cycle ofSalmonella typhimurium LT2. Current Microbiology, 1982, 7, 165-168.	1.0	7
68	Increased transformation levels in intact cells ofSaccharomyces cerevisiae aculeacin A-resistant mutants. Yeast, 1993, 9, 523-526.	0.8	6
69	XV. Yeast sequencing reports. Sequence analysis of a 9873 bp fragment of the left arm of yeast chromosome XV that contains theARG8 andCDC33 genes, a putative riboflavin synthase beta chain gene, and four new open reading frames. Yeast, 1995, 11, 1061-1067.	0.8	6
70	Sequence analysis of a 13·4 kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames. Yeast, 1996, 12, 1013-1020.	0.8	6
71	Turnover of protein components of the plasma membrane of Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Biomembranes, 1982, 689, 38-44.	1.4	5
72	The relative importance of transcription rate, cryptic transcription and mRNA stability on shaping stress responses in yeast. Transcription, 2012, 3, 39-44.	1.7	5

#	Article	IF	CITATIONS
73	Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames. Yeast, 1996, 12, 709-714.	0.8	4
74	Sequence analysis of a 12 801 bp fragment of the left arm of yeast chromosome XV containing a putative 6-phosphofructo-2-kinase gene, a gene for a possible glycophospholipid-anchored surface protein and six other open reading frames. Yeast, 1996, 12, 1053-1058.	0.8	4
75	In memory of Herman J. Phaff (1913?2001). International Microbiology, 2003, 6, 155-156.	1.1	Ο