
Jaemin Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5631954/publications.pdf Version: 2024-02-01

IAEMIN DADK

#	Article	IF	CITATIONS
1	Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nature Communications, 2020, 11, 861.	12.8	135
2	Adjusting the Anisotropy of 1D Sb ₂ Se ₃ Nanostructures for Highly Efficient Photoelectrochemical Water Splitting. Advanced Energy Materials, 2018, 8, 1702888.	19.5	89
3	Cu-Doped NiO _{<i>x</i>} as an Effective Hole-Selective Layer for a High-Performance Sb ₂ Se ₃ Photocathode for Photoelectrochemical Water Splitting. ACS Energy Letters, 2019, 4, 995-1003.	17.4	88
4	Efficient Solar-to-Hydrogen Conversion from Neutral Electrolytes using Morphology-Controlled Sb ₂ Se ₃ Light Absorbers. ACS Energy Letters, 2019, 4, 517-526.	17.4	63
5	Hierarchal Nanorod-Derived Bilayer Strategy to Enhance the Photocurrent Density of Sb ₂ Se ₃ Photocathodes for Photoelectrochemical Water Splitting. ACS Energy Letters, 2020, 5, 136-145.	17.4	58
6	Controlled Electrodeposition of Photoelectrochemically Active Amorphous MoS <i>_x</i> Cocatalyst on Sb ₂ Se ₃ Photocathode. ACS Applied Materials & Interfaces, 2018, 10, 10898-10908.	8.0	50
7	Solar water splitting exceeding 10% efficiency <i>via</i> low-cost Sb ₂ Se ₃ photocathodes coupled with semitransparent perovskite photovoltaics. Energy and Environmental Science, 2020, 13, 4362-4370.	30.8	47
8	Boosting Visible Light Harvesting in pâ€Type Ternary Oxides for Solarâ€ŧoâ€Hydrogen Conversion Using Inverse Opal Structure. Advanced Functional Materials, 2019, 29, 1900194.	14.9	43
9	Fullerene as a Photoelectron Transfer Promoter Enabling Stable TiO ₂ â€Protected Sb ₂ Se ₃ Photocathodes for Photoâ€Electrochemical Water Splitting. Advanced Energy Materials, 2019, 9, 1900179.	19.5	43
10	Hierarchically Structured Bifunctional Electrocatalysts of Stacked Core–Shell CoS _{1â^²} <i>_x</i> P <i>_x</i> Heterostructure Nanosheets for Overall Water Splitting. Small Methods, 2020, 4, 2000043.	8.6	43
11	High-Performance Phase-Pure SnS Photocathodes for Photoelectrochemical Water Splitting Obtained via Molecular Ink-Derived Seed-Assisted Growth of Nanoplates. ACS Applied Materials & Interfaces, 2020, 12, 15155-15166.	8.0	36
12	Energy Level-Graded Al-Doped ZnO Protection Layers for Copper Nanowire-Based Window Electrodes for Efficient Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 13824-13835.	8.0	31
13	Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response. Nanoscale, 2018, 10, 3720-3729.	5.6	25
14	Crystal Facetâ€Controlled Efficient SnS Photocathodes for High Performance Biasâ€Free Solar Water Splitting. Advanced Science, 2021, 8, e2102458.	11.2	17
15	Understanding the Influence of Anion Exchange on the Hole Transport Layer for Efficient and Humidity-Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 16730-16740.	6.7	15
16	Photocathodes: Boosting Visible Light Harvesting in pâ€Type Ternary Oxides for Solarâ€toâ€Hydrogen Conversion Using Inverse Opal Structure (Adv. Funct. Mater. 17/2019). Advanced Functional Materials, 2019, 29, 1970115.	14.9	1
17	Water Splitting: Fullerene as a Photoelectron Transfer Promoter Enabling Stable TiO 2 â€Protected Sb 2 Se 3 Photocathodes for Photoâ€Electrochemical Water Splitting (Adv. Energy Mater. 16/2019). Advanced Energy Materials, 2019, 9, 1970053.	19.5	1
18	Chemically Stable Semitransparent Perovskite Solar Cells with High Hydrogen Generation Rates Based on Photovoltaic–Photoelectrochemical Tandem Cells. Advanced Photonics Research, 2022, 3, .	3.6	0