
Joan L Kenney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5631458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mosquitoes Put the Brake on Arbovirus Evolution: Experimental Evolution Reveals Slower Mutation Accumulation in Mosquito Than Vertebrate Cells. PLoS Pathogens, 2009, 5, e1000467.	4.7	146
2	Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. Journal of General Virology, 2014, 95, 2796-2808.	2.9	119
3	Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses, 2015, 7, 5801-5812.	3.3	112
4	Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: Infection initiated by a small number of susceptible epithelial cells and a population bottleneck. Virology, 2008, 372, 176-186.	2.4	94
5	Restriction of Zika virus infection and transmission in <i>Aedes aegypti</i> mediated by an insect-specific flavivirus. Emerging Microbes and Infections, 2018, 7, 1-13.	6.5	73
6	llheus Virus Isolation in the Pantanal, West-Central Brazil. PLoS Neglected Tropical Diseases, 2013, 7, e2318.	3.0	47
7	Western Equine Encephalitis submergence: Lack of evidence for a decline in virus virulence. Virology, 2008, 380, 170-172.	2.4	45
8	Transmission Incompetence of Culex quinquefasciatus and Culex pipiens pipiens from North America for Zika Virus. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1235-1240.	1.4	41
9	The Role of Environmental, Virological and Vector Interactions in Dictating Biological Transmission of Arthropod-Borne Viruses by Mosquitoes. Advances in Virus Research, 2014, 89, 39-83.	2.1	38
10	Stability of RNA virus attenuation approaches. Vaccine, 2011, 29, 2230-2234.	3.8	32
11	Host Competence and Helicase Activity Differences Exhibited by West Nile Viral Variants Expressing NS3-249 Amino Acid Polymorphisms. PLoS ONE, 2014, 9, e100802.	2.5	26
12	Susceptibility and Vectorial Capacity of American <i>Aedes albopictus</i> and <i>Aedes aegypti</i> (Diptera: Culicidae) to American Zika Virus Strains. Journal of Medical Entomology, 2019, 56, 233-240.	1.8	21
13	MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice. Vaccine, 2016, 34, 5366-5375.	3.8	18
14	The First Outbreak of Eastern Equine Encephalitis in Vermont: Outbreak Description and Phylogenetic Relationships of the Virus Isolate. PLoS ONE, 2015, 10, e0128712.	2.5	17
15	Zika Virus MB16-23 in Mosquitoes, Miami-Dade County, Florida, USA, 2016. Emerging Infectious Diseases, 2018, 24, 808-810.	4.3	15
16	Genetic and Anatomic Determinants of Enzootic Venezuelan Equine Encephalitis Virus Infection of Culex (Melanoconion) taeniopus. PLoS Neglected Tropical Diseases, 2012, 6, e1606.	3.0	13
17	Demographics of Natural Oral Infection of Mosquitos by Venezuelan Equine Encephalitis Virus. Journal of Virology, 2015, 89, 4020-4022.	3.4	13
18	Rapid Screening of Aedes aegypti Mosquitoes for Susceptibility to Insecticides as Part of Zika Emergency Response, Puerto Rico. Emerging Infectious Diseases, 2019, 25, 1959-1961.	4.3	13

Joan L Kenney

#	Article	IF	CITATIONS
19	Transmission Potential of Two Chimeric Chikungunya Vaccine Candidates in the Urban Mosquito Vectors, Aedes aegypti and Ae. albopictus. American Journal of Tropical Medicine and Hygiene, 2011, 84, 1012-1015.	1.4	12
20	Seasonal Patterns in Eastern Equine Encephalitis Virus Antibody in Songbirds in Southern Maine. Vector-Borne and Zoonotic Diseases, 2017, 17, 325-330.	1.5	11
21	Infection, Dissemination, and Transmission Potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche Virus. Viruses, 2021, 13, 226.	3.3	10
22	Transmission Potential of Two Chimeric Western Equine Encephalitis Vaccine Candidates in Culex tarsalis. American Journal of Tropical Medicine and Hygiene, 2010, 82, 354-359.	1.4	9
23	Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence. Vector-Borne and Zoonotic Diseases, 2018, 18, 371-381.	1.5	6
24	Entomological Investigations During Early Stages of A Chikungunya Outbreak In the United States Virgin Islands, 2014. Journal of the American Mosquito Control Association, 2017, 33, 8-15.	0.7	3
25	The Effect of Fluctuating Incubation Temperatures on West Nile Virus Infection in Culex Mosquitoes. Viruses, 2021, 13, 1822.	3.3	3
26	Eastern Equine Encephalitis Virus Seroprevalence in Maine Cervids, 2012–2017. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2438-2441.	1.4	2
27	Laboratory Validation of a Real-Time RT-PCR Assay for the Detection of Jamestown Canyon Virus. Pathogens, 2022, 11, 536.	2.8	1