Emily E Rosowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5631294/publications.pdf

Version: 2024-02-01

20 papers

2,284 citations

643344 15 h-index 20 g-index

24 all docs

24 docs citations

times ranked

24

3359 citing authors

#	Article	IF	Citations
1	Cyclooxygenase production of PGE2 promotes phagocyte control of A. fumigatus hyphal growth in larval zebrafish. PLoS Pathogens, 2022, 18, e1010040.	2.1	10
2	Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish. Journal of Cell Science, 2020, 133, .	1.2	24
3	Infection of Zebrafish Larvae with Aspergillus Spores for Analysis of Host-Pathogen Interactions. Journal of Visualized Experiments, 2020, , .	0.2	7
4	Illuminating Macrophage Contributions to Host-Pathogen Interactions <i>In Vivo</i> : the Power of Zebrafish. Infection and Immunity, 2020, 88, .	1.0	14
5	Efficacy of Voriconazole against Aspergillus fumigatus Infection Depends on Host Immune Function. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	17
6	Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. DMM Disease Models and Mechanisms, 2020, 13 , .	1.2	64
7	Motile Collectors: Platelets Promote Innate Immunity. Immunity, 2018, 48, 16-18.	6.6	9
8	The Zebrafish as a Model Host for Invasive Fungal Infections. Journal of Fungi (Basel, Switzerland), 2018, 4, 136.	1.5	47
9	Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathogens, 2018, 14, e1007229.	2.1	106
10	Neutrophil migration in infection and wound repair: going forward in reverse. Nature Reviews Immunology, 2016, 16, 378-391.	10.6	736
11	Rac2 Functions in Both Neutrophils and Macrophages To Mediate Motility and Host Defense in Larval Zebrafish. Journal of Immunology, 2016, 197, 4780-4790.	0.4	46
12	Neutrophils, Wounds, and Cancer Progression. Developmental Cell, 2015, 34, 134-136.	3.1	18
13	The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole. Cell Host and Microbe, 2015, 17, 642-652.	5.1	208
14	Toxoplasma gondii Inhibits Gamma Interferon (IFN-γ)- and IFN-β-Induced Host Cell STAT1 Transcriptional Activity by Increasing the Association of STAT1 with DNA. Infection and Immunity, 2014, 82, 706-719.	1.0	69
15	Structure of the Toxoplasma gondii ROP18 Kinase Domain Reveals a Second Ligand Binding Pocket Required for Acute Virulence. Journal of Biological Chemistry, 2013, 288, 34968-34980.	1.6	18
16	Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways. PLoS Pathogens, 2013, 9, e1003779.	2.1	111
17	The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response. PLoS Pathogens, 2012, 8, e1002784.	2.1	222
18	Toxoplasma gondii Clonal Strains All Inhibit STAT1 Transcriptional Activity but Polymorphic Effectors Differentially Modulate IFNÎ ³ Induced Gene Expression and STAT1 Phosphorylation. PLoS ONE, 2012, 7, e51448.	1.1	60

2

#	Article	IF	CITATIONS
19	Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It. PLoS ONE, 2011, 6, e24434.	1.1	123
20	Strain-specific activation of the NF-κB pathway by GRA15, a novel <i>Toxoplasma gondii</i> dense granule protein. Journal of Experimental Medicine, 2011, 208, 195-212.	4.2	375