List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5630275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. NeuroImage, 2019, 184, 293-316.	2.1	527
2	Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson's disease. Movement Disorders, 2016, 31, 1748-1751.	2.2	213
3	Toward an electrophysiological "sweet spot―for deep brain stimulation in the subthalamic nucleus. Human Brain Mapping, 2017, 38, 3377-3390.	1.9	210
4	Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain, 2014, 137, 3012-3024.	3.7	171
5	Cortico-pallidal oscillatory connectivity in patients with dystonia. Brain, 2015, 138, 1894-1906.	3.7	141
6	A localized pallidal physiomarker in cervical dystonia. Annals of Neurology, 2017, 82, 912-924.	2.8	126
7	Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson's disease. Clinical Neurophysiology, 2017, 128, 2286-2291.	0.7	118
8	Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson's disease. ELife, 2018, 7, .	2.8	114
9	Beta bursts during continuous movements accompany the velocity decrement in Parkinson's disease patients. Neurobiology of Disease, 2019, 127, 462-471.	2.1	112
10	Deep brain stimulation induced normalization of the human functional connectome in Parkinson's disease. Brain, 2019, 142, 3129-3143.	3.7	109
11	Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics, 2019, 16, 105-118.	2.1	102
12	Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder. Molecular Psychiatry, 2014, 19, 1186-1192.	4.1	92
13	Scaling of Movement Is Related to Pallidal \hat{I}^3 Oscillations in Patients with Dystonia. Journal of Neuroscience, 2012, 32, 1008-1019.	1.7	88
14	Deep Brain Recordings Using an Implanted Pulse Generator in Parkinson's Disease. Neuromodulation, 2016, 19, 20-24.	0.4	74
15	Deep brain stimulation: Imaging on a group level. NeuroImage, 2020, 219, 117018.	2.1	69
16	Subthalamic beta dynamics mirror Parkinsonian bradykinesia months after neurostimulator implantation. Movement Disorders, 2017, 32, 1183-1190.	2.2	65
17	Pallidal and thalamic neural oscillatory patterns in tourette's syndrome. Annals of Neurology, 2018, 84, 505-514.	2.8	65
18	Neural signatures of hyperdirect pathway activity in Parkinson's disease. Nature Communications, 2021, 12, 5185.	5.8	65

#	Article	IF	CITATIONS
19	Cerebral Serotonin 4 Receptors and Amyloid-Î ² in Early Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 26, 457-466.	1.2	63
20	Functional segregation of basal ganglia pathways in Parkinson's disease. Brain, 2018, 141, 2655-2669.	3.7	62
21	Enhanced lowâ€frequency oscillatory activity of the subthalamic nucleus in a patient with dystonia. Movement Disorders, 2012, 27, 1063-1066.	2.2	52
22	Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings. Npj Parkinson's Disease, 2022, 8, 44.	2.5	49
23	Local field potentials in Parkinson's disease: A frequency-based review. Neurobiology of Disease, 2021, 155, 105372.	2.1	48
24	Modulation of Beta-Band Activity in the Subgenual Anterior Cingulate Cortex during Emotional Empathy in Treatment-Resistant Depression. Cerebral Cortex, 2016, 26, 2626-2638.	1.6	46
25	Subthalamic beta band suppression reflects effective neuromodulation in chronic recordings. European Journal of Neurology, 2021, 28, 2372-2377.	1.7	46
26	The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces. Brain Stimulation, 2021, 14, 1301-1306.	0.7	43
27	Subthalamic Nucleus and Sensorimotor Cortex Activity During Speech Production. Journal of Neuroscience, 2019, 39, 2698-2708.	1.7	40
28	Pallidal beta bursts in Parkinson's disease and dystonia. Movement Disorders, 2019, 34, 420-424.	2.2	40
29	Subthalamic neuromodulation improves short-term motor learning in Parkinson's disease. Brain, 2019, 142, 2198-2206.	3.7	37
30	Neuromodulation effects of deep brain stimulation on beta rhythm: A longitudinal local field potential study. Brain Stimulation, 2020, 13, 1784-1792.	0.7	36
31	Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation. Experimental Neurology, 2022, 351, 113993.	2.0	35
32	Spectral and spatial distribution of subthalamic beta peak activity in Parkinson's disease patients. Experimental Neurology, 2022, 356, 114150.	2.0	34
33	Pallidal lowâ€frequency activity in dystonia after cessation of longâ€ŧerm deep brain stimulation. Movement Disorders, 2019, 34, 1734-1739.	2.2	33
34	Subthalamic stimulation impairs stopping of ongoing movements. Brain, 2021, 144, 44-52.	3.7	33
35	Low-beta cortico-pallidal coherence decreases during movement and correlates with overall reaction time. NeuroImage, 2017, 159, 1-8.	2.1	31
36	Sensorimotor subthalamic stimulation restores riskâ€reward tradeâ€off in Parkinson's disease. Movement Disorders, 2019, 34, 366-376.	2.2	30

#	Article	IF	CITATIONS
37	Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson's disease. ELife, 0, 11, .	2.8	28
38	Clinical neurophysiology of Parkinson's disease and parkinsonism. Clinical Neurophysiology Practice, 2022, 7, 201-227.	0.6	28
39	<scp>S</scp> ubthalamic beta power—Unified <scp>P</scp> arkinson's disease rating scale <scp>III</scp> correlations require akinetic symptoms. Movement Disorders, 2017, 32, 175-176.	2.2	27
40	Cortical phase-amplitude coupling is key to the occurrence and treatment of freezing of gait. Brain, 2022, 145, 2407-2421.	3.7	23
41	Subthalamic beta oscillations correlate with dopaminergic degeneration in experimental parkinsonism. Experimental Neurology, 2021, 335, 113513.	2.0	21
42	Movement-related coupling of human subthalamic nucleus spikes to cortical gamma. ELife, 2020, 9, .	2.8	21
43	Risk of Infection after Deep Brain Stimulation Surgery with Externalization and Local-Field Potential Recordings: Twelve-Year Experience from a Single Institution. Stereotactic and Functional Neurosurgery, 2021, 99, 512-520.	0.8	19
44	Basal ganglia oscillations as biomarkers for targeting circuit dysfunction in Parkinson's disease. Progress in Brain Research, 2020, 252, 525-557.	0.9	15
45	Functional connectivity maps of theta/alpha and beta coherence within the subthalamic nucleus region. NeuroImage, 2022, 257, 119320.	2.1	15
46	Recommendations for empowering early career researchers to improve research culture and practice. PLoS Biology, 2022, 20, e3001680.	2.6	15
47	Machine Learning Will Extend the Clinical Utility of Adaptive Deep Brain Stimulation. Movement Disorders, 2021, 36, 796-799.	2.2	12
48	Lead-OR: A multimodal platform for deep brain stimulation surgery. ELife, 2022, 11, .	2.8	11
49	Movement disorders after hypoxic brain injury following cardiac arrest in adults. European Journal of Neurology, 2020, 27, 1937-1947.	1.7	10
50	A practical guide to invasive neurophysiology in patients with deep brain stimulation. Clinical Neurophysiology, 2022, 140, 171-180.	0.7	10
51	Assessment of myelination in infants and young children by T1 relaxation time measurements using the magnetization-prepared 2 rapid acquisition gradient echoes sequence. Pediatric Radiology, 2021, 51, 2058-2068.	1.1	9
52	Reply: Oscillatory coupling of the subthalamic nucleus in obsessive compulsive disorder. Brain, 2017, 140, e57-e57.	3.7	8
53	The Phenomenon of Exquisite Motor Control in Tic Disorders and its Pathophysiological Implications. Movement Disorders, 2021, 36, 1308-1315.	2.2	7
54	Intact Organization of Tactile Space Perception in Isolated Focal Dystonia. Movement Disorders, 2021, 36, 1949-1955.	2.2	7

#	Article	IF	CITATIONS
55	Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson's disease. Parkinsonism and Related Disorders, 2022, 94, 89-95.	1.1	7
56	Connectomic DBS: An introduction. , 2022, , 3-23.		5
57	Reply: Role of cortico-pallidal connectivity in the pathophysiology of dystonia. Brain, 2016, 139, e49-e49.	3.7	4
58	Reply to: Pallidal Lowâ€Frequency Activity in Dystonia and Subthalamic Beta Activity in Parkinson's Disease. Movement Disorders, 2020, 35, 1699-1699.	2.2	4
59	Oscillations of pause-burst neurons in the STN correlate with the severity of motor signs in Parkinson's disease. Experimental Neurology, 2022, 356, 114155.	2.0	4
60	Low-frequency oscillations link frontal and parietal cortex with subthalamic nucleus in conflicts. NeuroImage, 2022, 258, 119389.	2.1	3
61	A Virtual Morris Water Maze to Study Neurodegenarative Disorders. , 2020, , .		2
62	Neurophysiological mechanisms of DBS from a connectomic perspective. , 2022, , 59-87.		1
63	Electrocorticography is Superior to Subthalamic Local Field Potentials for Movement Decoding in Parkinson's Disease. SSRN Electronic Journal, 0, , .	0.4	1
64	Forschung: Tiefe Hirnstimulation $\hat{a} \in \hat{W}$ Methodische Umbr $\tilde{A}^{1\!/}_{4}$ che. , 0, , .		0