Jiang-Feng Qian

List of Publications by Citations

Source: https://exaly.com/author-pdf/5630251/jiang-feng-qian-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 95
 11,920
 53
 99

 papers
 citations
 h-index
 g-index

 99
 13,536
 10.4
 6.5

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
95	High rate and stable cycling of lithium metal anode. <i>Nature Communications</i> , 2015 , 6, 6362	17.4	1485
94	High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 7070-2	5.8	560
93	Sb II nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 323-328	35.4	536
92	High capacity and rate capability of amorphous phosphorus for sodium ion batteries. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 4633-6	16.4	535
91	TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells. <i>Advanced Materials</i> , 2009 , 21, 3663-3667	24	512
90	Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. <i>Nano Letters</i> , 2014 , 14, 1865-9	11.5	353
89	Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702619	21.8	299
88	Anode-Free Rechargeable Lithium Metal Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 7094-7102	15.6	297
87	Dendrite-free lithium deposition with self-aligned nanorod structure. <i>Nano Letters</i> , 2014 , 14, 6889-96	11.5	276
86	High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. <i>Angewandte Chemie</i> , 2013 , 125, 4731-4734	3.6	245
85	A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3Na2NiFe(CN)6 intercalation chemistry. <i>Electrochemistry Communications</i> , 2013 , 31, 145-148	3 ^{5.1}	238
84	P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery. <i>Electrochimica Acta</i> , 2014 , 116, 300-305	6.7	236
83	Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. Journal of Materials Chemistry A, 2013 , 1, 10130	13	236
82	Nanosized Na4Fe(CN)6/C Composite as a Low-Cost and High-Rate Cathode Material for Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2012 , 2, 410-414	21.8	228
81	Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. <i>Nano Energy</i> , 2015 , 15, 135-144	17.1	227
80	Highly Crystallized NattoFe(CN) with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 5393-9	9.5	220
79	Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. <i>Nano Letters</i> , 2015 , 15, 2168-73	11.5	216

(2016-2013)

78	Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3895	13	215
77	Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. <i>Nano Letters</i> , 2014 , 14, 3539-43	11.5	210
76	A low cost, all-organic Na-ion battery based on polymeric cathode and anode. <i>Scientific Reports</i> , 2013 , 3, 2671	4.9	197
75	Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. <i>Nano Energy</i> , 2015 , 13, 117-123	17.1	196
74	Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11397	13	194
73	Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3477-3482	3.8	192
72	Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4)3 intercalation chemistry. <i>ChemSusChem</i> , 2014 , 7, 407-11	8.3	182
71	Enabling room temperature sodium metal batteries. <i>Nano Energy</i> , 2016 , 30, 825-830	17.1	182
70	Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 14067-1407	, ₃ .8	179
69	3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1502197	21.8	177
68	Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. <i>Chemical Communications</i> , 2012 , 48, 8931-3	5.8	174
67	Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. <i>RSC Advances</i> , 2012 , 2, 3423	3.7	144
66	A SnBnSII nanocomposite as anode host materials for Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7181	13	126
65	Graphene-Scaffolded NaV(PO) Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 7177-7184	9.5	123
64	A tin(II) sulfidedarbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16424-16428	13	118
63	Vacancy-Free Prussian Blue Nanocrystals with High Capacity and Superior Cyclability for Aqueous Sodium-Ion Batteries. <i>ChemNanoMat</i> , 2015 , 1, 188-193	3.5	115
62	Redox-active Fe(CN)(6)(4-)-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. <i>Advanced Materials</i> , 2011 , 23, 4913-7	24	108
61	Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 8, 16684-9	9.5	107

60	Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4988	13	98
59	Enhanced Cycling Stability of Rechargeable LiD2 Batteries Using High-Concentration Electrolytes. <i>Advanced Functional Materials</i> , 2016 , 26, 605-613	15.6	91
58	Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries. ACS Applied Materials & amp; Interfaces, 2012, 4, 3753-8	9.5	87
57	SiCBb© nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. <i>Electrochimica Acta</i> , 2013 , 87, 41-45	6.7	84
56	A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries. <i>ACS Applied Materials & Discrete Section</i> , 7, 21095-9	9.5	82
55	Low Defect FeFe(CN)6 Framework as Stable Host Material for High Performance Li-Ion Batteries. <i>ACS Applied Materials & Description of Materials & Description (Materials & Description of Materials & Description </i>	9.5	82
54	Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. <i>Energy Storage Materials</i> , 2020 , 24, 635-643	19.4	80
53	Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. <i>ACS Energy Letters</i> , 2019 , 4, 1717-1724	20.1	78
52	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. <i>ACS Applied Materials & Description of Americal Science (Control of Chemical Science)</i> 10, 593-600.	-605	78
51	Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. <i>Chemical Communications</i> , 2013 , 49, 11370-2	5.8	76
50	Dual Core-Shell Structured Si@SiO@C Nanocomposite Synthesized via a One-Step Pyrolysis Method as a Highly Stable Anode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 31611-31616	9.5	72
49	Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 3508-12	9.5	72
48	Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries. <i>Small</i> , 2016 , 12, 583-7	11	71
47	Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11351-11356	13	58
46	Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures. Journal of Materials Chemistry A, 2014 , 2, 2346	13	57
45	Fe(CN)6½-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries. <i>RSC Advances</i> , 2012 , 2, 5495	3.7	56
44	Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7266		55
43	The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries. <i>Scientific Reports</i> , 2016 , 6, 34267	4.9	53

(2019-2020)

42	Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries. <i>Small</i> , 2020 , 16, e1907602	11	52	
41	Preparation and electrochemical performance of Sntot composite as anode material for Li-ion batteries. <i>Journal of Power Sources</i> , 2009 , 189, 730-732	8.9	52	
40	A polyimide anode with high capacity and superior cyclability for aqueous Na-ion batteries. <i>Chemical Communications</i> , 2015 , 51, 5097-9	5.8	49	
39	Building thermally stable Li-ion batteries using a temperature-responsive cathode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11239-11246	13	44	
38	Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. <i>ACS Applied Materials & Distributed Materials & </i>	9.5	39	
37	Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes. <i>Journal of Power Sources</i> , 2016 , 307, 231-243	8.9	37	
36	Electrochemical performances of Al-based composites as anode materials for Li-ion batteries. <i>Electrochimica Acta</i> , 2009 , 54, 4118-4122	6.7	37	
35	Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 14741-14748	9.5	36	
34	High-Performance GaO Anode for Lithium-Ion Batteries. <i>ACS Applied Materials & Discourse (Control of the Control of the Contro</i>	9.5	35	
33	In Situ Formation of CoS Nanoclusters in Sulfur-Doped Carbon Foam as a Sustainable and High-Rate Sodium-Ion Anode. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 19218-19226	9.5	33	
32	Covalently Bonded Silicon/Carbon Nanocomposites as Cycle-Stable Anodes for Li-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 12, 16411-16416	9.5	33	
31	A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. <i>Electrochimica Acta</i> , 2020 , 332, 135533	6.7	31	
30	Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. <i>ACS Energy Letters</i> , 2020 , 5, 1644-1652	20.1	31	
29	Antimony-Coated SiC Nanoparticles as Stable and High-Capacity Anode Materials for Li-Ion Batteries. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15196-15201	3.8	28	
28	An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. <i>Energy Storage Materials</i> , 2019 , 18, 92-99	19.4	28	
27	Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23396-23407	13	28	
26	Enhanced performance of Li LiFePO4 cells using CsPF6 as an electrolyte additive. <i>Journal of Power Sources</i> , 2015 , 293, 1062-1067	8.9	26	
25	A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. <i>Energy Storage Materials</i> , 2019 , 17, 275-283	19.4	23	

24	Achieving Desirable Initial Coulombic Efficiencies and Full Capacity Utilization of Li-Ion Batteries by Chemical Prelithiation of Graphite Anode. <i>Advanced Functional Materials</i> , 2021 , 31, 2101181	15.6	23
23	Sodium-Ion Batteries: Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries (Adv. Energy Mater. 17/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 1870079	21.8	21
22	Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. <i>Nanoscale</i> , 2019 , 11, 21999-22005	7.7	20
21	Surface-Bound Silicon Nanoparticles with a Planar-Oriented N-Type Polymer for Cycle-Stable Li-Ion Battery Anode. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 13251-13256	9.5	18
20	Pb-sandwiched nanoparticles as anode material for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 291-295	2.6	18
19	Surface-engineering enhanced sodium storage performance of Na3V2(PO4)3 cathode via in-situ self-decorated conducting polymer route. <i>Science China Chemistry</i> , 2017 , 60, 1546-1553	7.9	18
18	Enabling a high capacity and long cycle life for nano-Si anodes by building a stable solid interface with a Li+-conducting polymer. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9938-9944	13	18
17	NiGaO/rGO Composite as Long-Cycle-Life Anode Material for Lithium-Ion Batteries. <i>ACS Applied Materials & Material</i>	9.5	16
16	Highly Electrochemically-Reversible Mesoporous Na FePO F/C as Cathode Material for High-Performance Sodium-Ion Batteries. <i>Small</i> , 2019 , 15, e1903723	11	16
15	Recent Development of Aqueous Sodium Ion Batteries and Their Key Materials. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2013 , 28, 1165-1171	1	15
14	High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 729-735	6.1	15
13	Well-defined Na2Zn3[Fe(CN)6]2 nanocrystals as a low-cost and cycle-stable cathode material for Na-ion batteries. <i>Electrochemistry Communications</i> , 2019 , 98, 78-81	5.1	14
12	A solar rechargeable battery based on the sodium ion storage mechanism with Fe2(MoO4)3 microspheres as anode materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10627-10631	13	14
11	Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode 2020 , 2, 358-366		12
10	A High-Voltage and Cycle Stable Aqueous Rechargeable Na-Ion Battery Based on Na2Zn3[Fe(CN)6]2NaTi2(PO4)3 Intercalation Chemistry. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5809-58	81 ^{6.1}	12
9	Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5639-5647	13	11
8	Plasticpolymer composite electrolytes for solid state dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2010 , 55, 6415-6419	6.7	9
7	Organic Cathode Materials for Rechargeable Batteries. <i>Green Energy and Technology</i> , 2015 , 637-671	0.6	7

LIST OF PUBLICATIONS

6	Effect of Li1/3Mn2/3-Substitution on Electrochemical Performance of P2-Na0.74CoO2 Cathode for Sodium-ion Batteries. <i>Electrochimica Acta</i> , 2016 , 222, 862-866	6.7	6	
5	Research Progress on High Concentration Electrolytes for Li Metal Batteries. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 2008044-0	3.8	6	
4	Understanding the Effect of Additives in Li-ion and Li-Sulfur Batteries by Operando ec- (S)TEM. <i>Microscopy and Microanalysis</i> , 2016 , 22, 22-23	0.5	5	
3	Low temperature hydrothermal synthesis and electrochemical performances of LiFePO4 microspheres as a cathode material for lithium-ion batteries. <i>Science Bulletin</i> , 2012 , 57, 4164-4169		4	
2	Recent progress and challenges in the development of Prussian blue analogues as new	1.6	3	
2	intercalation cathode materials. <i>Scientia Sinica Chimica</i> , 2017 , 47, 603-613	1.0	9	