Keiko Hattori

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/5629671/publications.pdf
Version: 2024-02-01

Thermotectonic events recorded by U-Pb geochronology and Zr rin-rutile thermometry of Ti oxides in
1 basement rocks along the P2 fault, eastern Athabasca Basin, Saskatchewan, Canada. Bulletin of the Geological Society of America, 2022, 134, 567-576.

2 Petrogenesis of Garnet Clinopyroxenite and Associated Dunite in Hujialin, Sulu Orogenic Belt, Eastern China. Minerals (Basel, Switzerland), 2022, 12, 162.

Ultrahigh-Pressure Metamorphism and P-T Path of Xiaoxinzhuang Eclogites from the Southern Sulu
3 Orogenic Belt, Eastern China, Based on Phase Equilibria Modelling. Minerals (Basel, Switzerland), $2.0 \quad 2$ 2022, 12, 216.

Evolution of lithospheric mantle beneath the Maguan region, southwestern margin of the South 4 China block based on mantle xenoliths in Miocene alkaline volcanic rocks. Mineralogy and Petrology,
$1.1 \quad 2$ 2021, 115, 173-192.

Alteration Mineralogy of the Zhengguang Epithermal Au-Zn Deposit, Northeast China: Interpretation
5 of Shortwave Infrared Analyses During Mineral Exploration and Assessment. Economic Geology, 2021,
$3.8 \quad 27$ 116, 389-406.

Zircon Chemistry and Oxidation State of Magmas for the Duobaoshan-Tongshan Ore-Bearing
6 Intrusions in the Northeastern Central Asian Orogenic Belt, NE China. Minerals (Basel, Switzerland), 2021, 11, 503.

In situ characterization of forearc serpentinized peridotite from the Sulu ultrahigh-pressure terrane:
7 Behavior of fluid-mobile elements in continental subduction zone. Geoscience Frontiers, 2021, 12,
$8.4 \quad 7$ 101139.

Igneous rocks related to porphyry <scp>Cuâ€Au</scp> mineralization at the Dizon mine, Philippines.
Resource Geology, 2021, 71, 392-408.
0.8

2

Petrology of green polished stone axes of the Jomon period from the <scp>Sannaiâ€Maruyama</scp>
9 site, Japan, investigating the origin of source rock. Island Arc, 2021,30 , el2384.

The origin of Ti-oxide minerals below and within the eastern Athabasca Basin, Canada. American
10 Mineralogist, 2020, 105, 1875-1888.
1.9

6

Protracted Magmatism and Mineralized Hydrothermal Activity at the Gibraltar Porphyry
Copper-Molybdenum Deposit, British Columbia. Economic Geology, 2020, 115, 1119-1136.

Ammonium abundance and short-wave infrared absorption spectra of altered rocks. Geochemistry:
12 Exploration, Environment, Analysis, 2020, 20, 451-460.
$0.9 \quad 0$

Early Palaeozoic sub-arc chromitite-bearing peridotite in the Kudi ophiolite on the westernmost
13 Tibetan Plateau. International Geology Review, 2019, 61, 1105-1123.
A multivariate statistical approach identifying the areas underlain by potential porphyry-style Cu
14 mineralization, south-central British Columbia, Canada. Journal of Geochemical Exploration, 2019,
3.2
2.13 202, 13-26.

> Abyssal Serpentinites: Transporting Halogens from Earthâ $\epsilon^{T M}$ s Surface to the Deep Mantle. Minerals
> (Basel, Switzerland), 2019, 9, 61.
2.0

Gold Mineralization in Izu Peninsula, Central Japan, during Crustal Extension in Response to Double Subduction. Resource Geology, 2019, 69, 167-175.

```
19 Porphyry Copper Potential in Japan Based on Magmatic Oxidation State. Resource Geology, 2018, 68,
126-137.

Multielement statistical evidence for uraniferous hydrothermal activity in sandstones overlying the Phoenix uranium deposit, Athabasca Basin, Canada. Mineralium Deposita, 2018, 53, 493-508.
\(4.1 \quad 8\)

Mantle wedge serpentinites: A transient reservoir of halogens, boron, and nitrogen for the deeper
21 Mantie wedge serpentinites: A transie
4.4

24

Mineral Inclusions in Chromite from the Chromite Deposit in the Kudi Ophiolite, Tibet, Protoâ€đethys.
1.4

12
Acta Geologica Sinica, 2017, 91, 469-485.

Experimental insight into redox transfer by iron- and sulfur-bearing serpentinite dehydration in
subduction zones. Earth and Planetary Science Letters, \(2017,479,133-143\).
\(4.4 \quad 27\)

Characterizing fluids associated with the McArthur River U deposit, Canada, based on tourmaline
trace element and stable (B, H) isotope compositions. Chemical Geology, 2017, 466, 417-435.
3.3

18
Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt,
NW China: Implications for the early evolution of the northwestern Tibetan plateau. Lithos, 2017,
\(286-287,345-362\). Tracing halogen and B cycling in subduction zones based on obducted, subducted and forearc \begin{tabular}{l} 
Tratich \\
serpentinites of the Dominican Republic. Scientific Reports, 2017, 7, 17776.
\end{tabular} Protolith of the Stak eclogite in the northwestern Himalaya. Italian Journal of Geosciences, 2017, 136,
37
38

Compositional variation and timing of aluminum phosphate-sulfate minerals in the basement rocks
37 along the P2 fault and in association with the McArthur River uranium deposit, Athabasca Basin,
1.9

20
Saskatchewan, Canada. American Mineralogist, 2015, 100, 1386-1399.
Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry
Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 2015, 110, 1861-1878.
3.8

199
The influence of metamorphic grade on arsenic in metasedimentary bedrock aquifers: A case study
from Western New England, USA. Science of the Total Environment, 2015, 505, 1320-1330.
40 Helium anomalies suggest a fluid pathway from mantle to trench during the 2011 Tohoku-Oki
earthquake. Nature Communications, 2014, 5, 3084.
41 Titanium- and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif
(Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluid-mobile elements.
8.0
(Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluid-mobile elements.
\(3.1 \quad 34\)
Contributions To Mineralogy and Petrology, 2014, 167, 1.
42 Zoned Cr -spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan
Complex, Dominican Republic. Mineralogical Magazine, 2013, 77, 117-136.
1.4

52

43 Geochemistry of subduction zone serpentinites: A review. Lithos, 2013, 178, 96-127.
1.4

514

Arsenic in a fractured slate aquifer system, New England, USA: Influence of bedrock geochemistry, groundwater flow paths, redox and ion exchange. Applied Geochemistry, 2013, 39, 181-192.
3.0

24


158-170.

Oxidation state of lithospheric mantle along the northeastern margin of the North China Craton:
implications for geodynamic processes. International Geology Review, 2013, 55, 1418-1444.
\begin{tabular}{|c|c|c|c|}
\hline 47 & Origin of ultramafic xenoliths in high-Mg diorites from east-central China based on their oxidation state and abundance of platinum group elements. International Geology Review, 2012, 54, 1203-1218. & 2.1 & 16 \\
\hline 48 & Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology, 2012, 312-313, 93-117. & 3.3 & 94 \\
\hline 49 & A geochemical study on mud volcanoes in the Junggar Basin, China. Applied Geochemistry, 2011, 26, 1065-1076. & 3.0 & 40 \\
\hline
\end{tabular}

Metal binding to dissolved organic matter and adsorption to ferrihydrite in shallow peat
50 groundwaters: Application to diamond exploration in the James Bay Lowlands, Canada. Applied
3.0

12
Geochemistry, 2011, 26, 1649-1664.
Longâ€lasting intracontinental strikeâ€slip faulting: new evidence from the Karakorum shear zone in the
Himalayas. Terra Nova, 2011, 23, 92-99.
\(2.1 \quad 17\)

Serpentinites act as sponges for fluidâ€mobile elements in abyssal and subduction zone environments.
Terra Nova, 2011, 23, 171-178.
2.1

125

Corundum-bearing garnet peridotite from northern Dominican Republic: A metamorphic product of an
arc cumulate in the Caribbean subduction zone. Lithos, 2010, 114, 437-450.
1.4

42
57 Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. Frontiers in Earth
Sciences, 2009, , 175-205.
Oxidation state of Paleozoic subcontinental lithospheric mantle below the Pali Aike volcanic field in
southernmost Patagonia. Lithos, 2008, 105, \(98-110\).

Geochemistry of peat over kimberlites in the Attawapiskat area, James Bay Lowlands, northern Canada.
Applied Geochemistry, 2008, 23, 3767-3782.
Tethyan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic
rocks. Tectonophysics, 2008, 451, 225-241.

62 Geochemistry of apatite-rich layers in the Finero phlogopiteâe"peridotite massif (Italian Western Alps)
and ion microprobe dating of apatite. Chemical Geology, 2008, 251, 99-111.
3.3

41
63
64

An atomic level study of rhenium and radiogenic osmium in molybdenite. Geochimica Et Cosmochimica
Acta, 2007, 71, 5180-5190.

Initial geometry of western Himalaya and ultrahigh-pressure metamorphic evolution. Journal of Asian
Earth Sciences, 2007, 30, 557-564.
2.3

39
Geochemical character of serpentinites associated with highâ€oto ultrahighâ€pressure metamorphic
rocks in the Alps, Cuba, and the Himalayas: Recycling of elements in subduction zones. Geochemistry Geophysics, Geosystems, 2007, 8, .

66 Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: Insights from
Greater Antilles. Geophysical Research Letters, 2007, 34, .
4.0

87
67 Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fO2 by
slab-melt. Contributions To Mineralogy and Petrology, 2007, 153, 607-624.

The Quetico Intrusions of Western Superior Province: Neo-Archean examples of Alaskan/Ural-type maficâ€"ultramafic intrusions. Precambrian Research, 2006, 149, 21-42.
2.7

101

Magmatic mineralization and hydrothermal enrichment of the High Grade Zone at the Lac des lles palladium mine, northern Ontario, Canada. Mineralium Deposita, 2005, 40, 13-23.
73
The Gandy and Abolhassani Epithermal Prospects in the Alborz Magmatic Arc, Semnan Province,
Northern Iran. Economic Geology, 2004, 99, 691-712.
3.8

56

74 Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines. Contributions To Mineralogy and
3.1

99
Petrology, 2004, 146, 750-761.
75 Source and tectono-metamorphic evolution of mafic and pelitic metasedimentary rocks from the
\(75 \quad 2.7\) central Quetico metasedimentary belt, Archean Superior Province of Canada. Precambrian Research, 20.2

76 Origin of placer laurite from Borneo: Se and As contents, and S isotopic compositions. Mineralogical
1.4

Magazine, 2004, 68, 353-368.
35
77 Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge.
Geology, 2003, 31, 525.
\(4.4 \quad 212\)

78 Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA.
Mineralium Deposita, 2002, 37, 14-37.
\(4.1 \quad 107\)
Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth and
Planetary Science Letters, 2001, 193, 115-127.
\begin{tabular}{|c|c|c|c|}
\hline 80 & Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Mineralium Deposita, 2001, 36, 799-806. & 4.1 & 272 \\
\hline 81 & Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: mineralogy, geochemistry and isotope characteristics. Geochimica Et Cosmochimica Acta, 1999, 63, 2785-2804. & 3.9 & 80 \\
\hline 82 & Negative ionization processes of osmium for isotopic measurements. International Journal of Mass Spectrometry, 1998, 176, 189-201. & 1.5 & 6 \\
\hline 83 & Metamorphosed Archean epithermal Au-As-Sb-Zn-(Hg) vein mineralization at the Campbell Mine, northwestern Ontario; discussion. Economic Geology, 1998, 93, 683-685. & 3.8 & 4 \\
\hline 84 & Melt and source mantle compositions in the Late Archaean: A study of strontium and neodymium isotope and trace elements in clinopyroxenes from shoshonitic alkaline rocks. Geochimica Et Cosmochimica Acta, 1996, 60, 4551-4562. & 3.9 & 24 \\
\hline 85 & Magma evolution recorded in plagioclase zoning in 1991 Pinatubo eruption products. American Mineralogist, 1996, 81, 982-994. & 1.9 & 85 \\
\hline
\end{tabular}

86 Late Archaean geological development recorded in the Timiskaming Group sedimentary rocks, Kirkland Lake area, Abitibi greenstone belt, Canada. Precambrian Research, 1994, 68, 23-42.

Provenance of igneous clasts in conglomerates of the Archaean Timiskaming Group, Kirkland Lake
area, Abitibi greenstone belt, Canada. Canadian Journal of Earth Sciences, 1994, 31, 1749-1762.
1.3

8

Diverse metal sources of Archaean gold deposits: evidence from in situ lead-isotope analysis of individual grains of galena and altaite in the Ross and Kirkland Lake deposits, Abitibi Greenstone belt,
3.1 8 Canada. Contributions To Mineralogy and Petrology, 1993, 113, 185-195.

High-sulfur magma, a product of fluid discharge from underlying mafic magma: Evidence from Mount
Pinatubo, Philippines. Geology, 1993, 21, 1083.
4.4

121

Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions: Os-isotopic

The Hemlo gold deposit, Ontario: A geochemical and isotopic study. Geochimica Et Cosmochimica
1985, 49, 2041-2050.
99 Sulphur isotope abundances in Aphebian clastic rocks: implications for the coeval atmosphere.
Nature, 1983, 302, 323-326.
\(100 \quad\)\begin{tabular}{l} 
Calculation of oxygen isotope fractionation between uranium dioxide, uranium trioxide and water. \\
Geochimica Et Cosmochimica Acta, 1982, 46, 1863-1868.
\end{tabular}```

