Dmitry O Traktuev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5629575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Senescence-associated hyper-activation to inflammatory stimuli in vitro. Aging, 2021, 13, 19088-19107.	3.1	24
2	Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. Stem Cells, 2021, 39, 170-182.	3.2	1
3	Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. Stem Cells, 2021, 39, 170-182.	3.2	9
4	Therapeutic Use of Adipose-Derived Stromal Cells in a Murine Model of Acute Pancreatitis. Journal of Gastrointestinal Surgery, 2020, 24, 67-75.	1.7	13
5	Cigarette Smoking Impairs Adipose Stromal Cell Vasculogenic Activity and Abrogates Potency to Ameliorate Ischemia. Stem Cells, 2018, 36, 856-867.	3.2	15
6	Hypoxiaâ€induced activin A diminishes endothelial cell vasculogenic activity. Journal of Cellular and Molecular Medicine, 2018, 22, 173-184.	3.6	7
7	Adipose Stem Cell Function Maintained with Age: An Intra-Subject Study of Long-Term Cryopreserved Cells. Aesthetic Surgery Journal, 2017, 37, sjw197.	1.6	24
8	Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells. Stem Cells, 2017, 35, 1273-1289.	3.2	65
9	Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury. Journal of Cellular and Molecular Medicine, 2017, 21, 1420-1430.	3.6	19
10	Adipose stromal cells differentiation toward smooth muscle cell phenotype diminishes their vasculogenic activity due to induction of activin A secretion. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3145-3156.	2.7	11
11	Therapeutic Potential of Adipose-Derived Therapeutic Factor Concentrate for Treating Critical Limb Ischemia. Cell Transplantation, 2016, 25, 1623-1633.	2.5	14
12	Intravenous xenogeneic transplantation of human adiposeâ€derived stem cells improves left ventricular function and microvascular integrity in swine myocardial infarction model. Catheterization and Cardiovascular Interventions, 2015, 86, E38-48.	1.7	15
13	Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis. Journal of Translational Medicine, 2015, 13, 67.	4.4	24
14	Adipose Stromal Cell Contact with Endothelial Cells Results in Loss of Complementary Vasculogenic Activity Mediated by Induction of Activin A. Stem Cells, 2015, 33, 3039-3051.	3.2	22
15	Human Adipose-Derived Stem Cells Ameliorate Cigarette Smoke-Induced Murine Myelosuppression via Secretion of TSG-6. Stem Cells, 2015, 33, 468-478.	3.2	24
16	Regenerative Therapeutic Potential of Adipose Stromal Cells in Early Stage Diabetic Retinopathy. PLoS ONE, 2014, 9, e84671.	2.5	100
17	Human Adipose-Derived Stromal/Stem Cells Protect Against STZ-Induced Hyperglycemia: Analysis of hASC-Derived Paracrine Effectors. Stem Cells, 2014, 32, 1831-1842.	3.2	63
18	Adipose Stromal Cells Differentiate Along a Smooth Muscle Lineage Pathway Upon Endothelial Cell Contact via Induction of Activin A. Circulation Research, 2014, 115, 800-809.	4.5	60

DMITRY O TRAKTUEV

#	Article	IF	CITATIONS
19	Resident Endothelial Progenitor Cells from Human Placenta have Greater Vasculogenic Potential than Circulating Endothelial Progenitor Cells from Umbilical Cord Blood. Cell Medicine, 2011, 2, 85-96.	5.0	30
20	The creation of an inÂvitro adipose tissue that contains a vascular–adipocyte complex. Biomaterials, 2011, 32, 9667-9676.	11.4	33
21	Adipose Stem Cell Treatment in Mice Attenuates Lung and Systemic Injury Induced by Cigarette Smoking. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 215-225.	5.6	164
22	Protective Effects Of Adipose Stem Cells Against Cigarette-smoke Induced Lung Injury. , 2010, , .		0
23	Adipose Tissue Progenitor Cells Directly Interact with Endothelial Cells to Induce Vascular Network Formation. Tissue Engineering - Part A, 2010, 16, 2953-2966.	3.1	167
24	Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Current Opinion in Organ Transplantation, 2010, 15, 86-91.	1.6	137
25	White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models. Cancer Research, 2009, 69, 5259-5266.	0.9	294
26	Robust Functional Vascular Network Formation In Vivo by Cooperation of Adipose Progenitor and Endothelial Cells. Circulation Research, 2009, 104, 1410-1420.	4.5	296
27	Interphase FISH Demonstrates that Human Adipose Stromal Cells Maintain a High Level of Genomic Stability in Long-Term Culture. Stem Cells and Development, 2009, 18, 717-724.	2.1	51
28	IFATS Collection: Combinatorial Peptides Identify $\hat{I}\pm5\hat{I}^21$ Integrin as a Receptor for the Matricellular Protein SPARC on Adipose Stromal Cells. Stem Cells, 2008, 26, 2735-2745.	3.2	70
29	IFATS Collection: Adipose Stromal Cell Differentiation Is Reduced by Endothelial Cell Contact and Paracrine Communication: Role of Canonical Wnt Signaling. Stem Cells, 2008, 26, 2674-2681.	3.2	90
30	A central role for hepatocyte growth factor in adipose tissue angiogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E336-E344.	3.5	63
31	A Population of Multipotent CD34-Positive Adipose Stromal Cells Share Pericyte and Mesenchymal Surface Markers, Reside in a Periendothelial Location, and Stabilize Endothelial Networks. Circulation Research, 2008, 102, 77-85.	4.5	762
32	Adipogenesis of Adipose Stromal Cells is Reduced by Endothelial Cell Coâ€cultivation: Role for Wntâ€signaling. FASEB Journal, 2008, 22, 49.11.	0.5	0
33	Urokinase Gene Transfer Augments Angiogenesis in Ischemic Skeletal and Myocardial Muscle. Molecular Therapy, 2007, 15, 1939-1946.	8.2	53
34	Suppression of Hepatocyte Growth Factor Production Impairs the Ability of Adipose-Derived Stem Cells to Promote Ischemic Tissue Revascularization. Stem Cells, 2007, 25, 3234-3243.	3.2	208
35	Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells. Circulation, 2004, 109, 1292-1298.	1.6	2,041