Dmitry O Traktuev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5629575/publications.pdf

Version: 2024-02-01

304743 377865 4,970 35 22 34 citations h-index g-index papers 37 37 37 6029 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells. Circulation, 2004, 109, 1292-1298.	1.6	2,041
2	A Population of Multipotent CD34-Positive Adipose Stromal Cells Share Pericyte and Mesenchymal Surface Markers, Reside in a Periendothelial Location, and Stabilize Endothelial Networks. Circulation Research, 2008, 102, 77-85.	4. 5	762
3	Robust Functional Vascular Network Formation In Vivo by Cooperation of Adipose Progenitor and Endothelial Cells. Circulation Research, 2009, 104, 1410-1420.	4.5	296
4	White Adipose Tissue Cells Are Recruited by Experimental Tumors and Promote Cancer Progression in Mouse Models. Cancer Research, 2009, 69, 5259-5266.	0.9	294
5	Suppression of Hepatocyte Growth Factor Production Impairs the Ability of Adipose-Derived Stem Cells to Promote Ischemic Tissue Revascularization. Stem Cells, 2007, 25, 3234-3243.	3.2	208
6	Adipose Tissue Progenitor Cells Directly Interact with Endothelial Cells to Induce Vascular Network Formation. Tissue Engineering - Part A, 2010, 16, 2953-2966.	3.1	167
7	Adipose Stem Cell Treatment in Mice Attenuates Lung and Systemic Injury Induced by Cigarette Smoking. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 215-225.	5.6	164
8	Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Current Opinion in Organ Transplantation, 2010, 15, 86-91.	1.6	137
9	Regenerative Therapeutic Potential of Adipose Stromal Cells in Early Stage Diabetic Retinopathy. PLoS ONE, 2014, 9, e84671.	2.5	100
10	IFATS Collection: Adipose Stromal Cell Differentiation Is Reduced by Endothelial Cell Contact and Paracrine Communication: Role of Canonical Wnt Signaling. Stem Cells, 2008, 26, 2674-2681.	3.2	90
11	IFATS Collection: Combinatorial Peptides Identify $\hat{l}\pm5\hat{l}^21$ Integrin as a Receptor for the Matricellular Protein SPARC on Adipose Stromal Cells. Stem Cells, 2008, 26, 2735-2745.	3.2	70
12	Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells. Stem Cells, 2017, 35, 1273-1289.	3.2	65
13	A central role for hepatocyte growth factor in adipose tissue angiogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E336-E344.	3.5	63
14	Human Adipose-Derived Stromal/Stem Cells Protect Against STZ-Induced Hyperglycemia: Analysis of hASC-Derived Paracrine Effectors. Stem Cells, 2014, 32, 1831-1842.	3.2	63
15	Adipose Stromal Cells Differentiate Along a Smooth Muscle Lineage Pathway Upon Endothelial Cell Contact via Induction of Activin A. Circulation Research, 2014, 115, 800-809.	4.5	60
16	Urokinase Gene Transfer Augments Angiogenesis in Ischemic Skeletal and Myocardial Muscle. Molecular Therapy, 2007, 15, 1939-1946.	8.2	53
17	Interphase FISH Demonstrates that Human Adipose Stromal Cells Maintain a High Level of Genomic Stability in Long-Term Culture. Stem Cells and Development, 2009, 18, 717-724.	2.1	51
18	The creation of an inÂvitro adipose tissue that contains a vascular–adipocyte complex. Biomaterials, 2011, 32, 9667-9676.	11.4	33

#	Article	IF	Citations
19	Resident Endothelial Progenitor Cells from Human Placenta have Greater Vasculogenic Potential than Circulating Endothelial Progenitor Cells from Umbilical Cord Blood. Cell Medicine, 2011, 2, 85-96.	5.0	30
20	Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis. Journal of Translational Medicine, 2015, 13, 67.	4.4	24
21	Human Adipose-Derived Stem Cells Ameliorate Cigarette Smoke-Induced Murine Myelosuppression via Secretion of TSG-6. Stem Cells, 2015, 33, 468-478.	3. 2	24
22	Adipose Stem Cell Function Maintained with Age: An Intra-Subject Study of Long-Term Cryopreserved Cells. Aesthetic Surgery Journal, 2017, 37, sjw197.	1.6	24
23	Senescence-associated hyper-activation to inflammatory stimuli in vitro. Aging, 2021, 13, 19088-19107.	3.1	24
24	Adipose Stromal Cell Contact with Endothelial Cells Results in Loss of Complementary Vasculogenic Activity Mediated by Induction of Activin A. Stem Cells, 2015, 33, 3039-3051.	3.2	22
25	Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury. Journal of Cellular and Molecular Medicine, 2017, 21, 1420-1430.	3.6	19
26	Intravenous xenogeneic transplantation of human adiposeâ€derived stem cells improves left ventricular function and microvascular integrity in swine myocardial infarction model. Catheterization and Cardiovascular Interventions, 2015, 86, E38-48.	1.7	15
27	Cigarette Smoking Impairs Adipose Stromal Cell Vasculogenic Activity and Abrogates Potency to Ameliorate Ischemia. Stem Cells, 2018, 36, 856-867.	3.2	15
28	Therapeutic Potential of Adipose-Derived Therapeutic Factor Concentrate for Treating Critical Limb Ischemia. Cell Transplantation, 2016, 25, 1623-1633.	2.5	14
29	Therapeutic Use of Adipose-Derived Stromal Cells in a Murine Model of Acute Pancreatitis. Journal of Gastrointestinal Surgery, 2020, 24, 67-75.	1.7	13
30	Adipose stromal cells differentiation toward smooth muscle cell phenotype diminishes their vasculogenic activity due to induction of activin A secretion. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3145-3156.	2.7	11
31	Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. Stem Cells, 2021, 39, 170-182.	3.2	9
32	Hypoxiaâ€induced activin A diminishes endothelial cell vasculogenic activity. Journal of Cellular and Molecular Medicine, 2018, 22, 173-184.	3.6	7
33	Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. Stem Cells, 2021, 39, 170-182.	3.2	1
34	Protective Effects Of Adipose Stem Cells Against Cigarette-smoke Induced Lung Injury. , 2010, , .		0
35	Adipogenesis of Adipose Stromal Cells is Reduced by Endothelial Cell Coâ€cultivation: Role for Wntâ€signaling. FASEB Journal, 2008, 22, 49.11.	0.5	0