
Anders Etzerodt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5629424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD163 and Inflammation: Biological, Diagnostic, and Therapeutic Aspects. Antioxidants and Redox Signaling, 2013, 18, 2352-2363.	2.5	400
2	Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression. Cell Metabolism, 2019, 29, 1376-1389.e4.	7.2	261
3	Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. Journal of Experimental Medicine, 2020, 217, .	4.2	189
4	Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. Journal of Leukocyte Biology, 2010, 88, 1201-1205.	1.5	182
5	Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell–mediated tumor regression. Journal of Experimental Medicine, 2019, 216, 2394-2411.	4.2	141
6	The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	1.9	136
7	Obesity Alters Adipose Tissue Macrophage Iron Content and Tissue Iron Distribution. Diabetes, 2014, 63, 421-432.	0.3	131
8	Targeting the Hemoglobin Scavenger receptor CD163 in Macrophages Highly Increases the Anti-inflammatory Potency of Dexamethasone. Molecular Therapy, 2012, 20, 1550-1558.	3.7	116
9	Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. Journal of Controlled Release, 2012, 160, 72-80.	4.8	113
10	Tumorâ€promoting macrophages induce the expression of the macrophageâ€specific receptor CD163 in malignant cells. International Journal of Cancer, 2012, 131, 2320-2331.	2.3	103
11	Anti-Inflammatory Modulation of Microglia via CD163-Targeted Glucocorticoids Protects Dopaminergic Neurons in the 6-OHDA Parkinson's Disease Model. Journal of Neuroscience, 2016, 36, 9375-9390.	1.7	99
12	Plasma Clearance of Hemoglobin and Haptoglobin in Mice and Effect of CD163 Gene Targeting Disruption. Antioxidants and Redox Signaling, 2013, 18, 2254-2263.	2.5	71
13	Structural Basis for Inflammation-driven Shedding of CD163 Ectodomain and Tumor Necrosis Factor-α in Macrophages. Journal of Biological Chemistry, 2014, 289, 778-788.	1.6	69
14	Antibody-Directed Glucocorticoid Targeting to CD163 in M2-type Macrophages Attenuates Fructose-Induced Liver Inflammatory Changes. Molecular Therapy - Methods and Clinical Development, 2017, 4, 50-61.	1.8	61
15	STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunology, Immunotherapy, 2019, 68, 489-502.	2.0	45
16	Soluble ectodomain CD163 and extracellular vesicle-associated CD163 are two differently regulated forms of †soluble CD163' in plasma. Scientific Reports, 2017, 7, 40286.	1.6	38
17	The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. Journal of Leukocyte Biology, 2019, 106, 1129-1138.	1.5	38
18	Targeting Dexamethasone to Macrophages in a Porcine Endotoxemic Model. Critical Care Medicine, 2013, 41, e309-e318.	0.4	36

ANDERS ETZERODT

#	Article	IF	CITATIONS
19	The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen. Journal of Biological Chemistry, 2016, 291, 23989-23998.	1.6	36
20	Structural assembly of the megadalton-sized receptor for intestinal vitamin B12 uptake and kidney protein reabsorption. Nature Communications, 2018, 9, 5204.	5.8	35
21	Soluble <scp>CD163</scp> Changes Indicate Monocyte Association With Cognitive Deficits in Parkinson's Disease. Movement Disorders, 2021, 36, 963-976.	2.2	35
22	Comparative assessment of the recognition of domain-specific CD163 monoclonal antibodies in human monocytes explains wide discrepancy in reported levels of cellular surface CD163 expression. Immunobiology, 2011, 216, 882-890.	0.8	32
23	Mouse CD163 deficiency strongly enhances experimental collagen-induced arthritis. Scientific Reports, 2020, 10, 12447.	1.6	23
24	<p>Targeted lipid nanoparticle delivery of calcitriol to human monocyte-derived macrophages in vitro and in vivo: investigation of the anti-inflammatory effects of calcitriol</p> . International Journal of Nanomedicine, 2019, Volume 14, 2829-2846.	3.3	19
25	A disintegrin and metalloprotease-17 and galectin-9 are important regulators of local 4-1BB activity and disease outcome in rheumatoid arthritis. Rheumatology, 2016, 55, 1871-1879.	0.9	17
26	Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nature Communications, 2022, 13, 1985.	5.8	14
27	STAT3 is over-activated within CD163pos bone marrow macrophages in both Multiple Myeloma and the benign pre-condition MGUS. Cancer Immunology, Immunotherapy, 2021, , 1.	2.0	7
28	Therapeutic targeting of tumor-associated macrophages. Advances in Pharmacology, 2021, 91, 185-211.	1.2	5
29	Anti-inflammatory liposomes have no impact on liver regeneration in rats. Annals of Medicine and Surgery, 2015, 4, 452-461.	0.5	3
30	Anti-inflammatory therapy via CD163-macrophages in the 6-OHDA Parkinson's disease model. Journal of Neuroimmunology, 2014, 275, 129.	1.1	0