Tim Reston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5629027/publications.pdf Version: 2024-02-01

TIM RESTON

#	Article	IF	CITATIONS
1	Insight into the nature of the ocean-continent transition off West Iberia from a deep multichannel seismic reflection profile. Geology, 1996, 24, 1079.	2.0	157
2	The S reflector west of Galicia (Spain): Evidence from prestack depth migration for detachment faulting during continental breakup. Journal of Geophysical Research, 1996, 101, 8075-8091.	3.3	149
3	Mechanisms of extension at nonvolcanic margins: Evidence from the Galicia interior basin, west of Iberia. Journal of Geophysical Research, 2003, 108, .	3.3	133
4	Extension discrepancy at North Atlantic nonvolcanic rifted margins: Depth-dependent stretching or unrecognized faulting?. Geology, 2007, 35, 367.	2.0	107
5	Magma fingers and host rock fluidization in the emplacement of sills. Geology, 2010, 38, 63-66.	2.0	102
6	Evidence for shear zones in the lower crust offshore Britain. Tectonics, 1988, 7, 929-945.	1.3	82
7	The 3-D geometry of detachment faulting at mid-ocean ridges. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	76
8	Fault-controlled hydration of the upper mantle during continentalÂrifting. Nature Geoscience, 2016, 9, 384-388.	5.4	75
9	The S reflector west of Galicia: the seismic signature of a detachment fault. Geophysical Journal International, 1996, 127, 230-244.	1.0	66
10	The lower crust and the extension of the continental lithosphere: Kinematic analysis of Birps Deep Seismic Data. Tectonics, 1990, 9, 1235-1248.	1.3	64
11	Continental hyperextension, mantle exhumation, and thin oceanic crust at the continentâ€ocean transition, West Iberia: New insights from wideâ€angle seismic. Journal of Geophysical Research: Solid Earth, 2016, 121, 3177-3199.	1.4	53
12	Mantle shear zones and the evolution of the northern North Sea basin. Geology, 1990, 18, 272.	2.0	52
13	Lithospheric extension from rifting to continental breakup at magma-poor margins: rheology, serpentinisation and symmetry. International Journal of Earth Sciences, 2007, 96, 1033-1046.	0.9	50
14	Reflective oceanic crust formed at a fast-spreading center in the Pacific. Geology, 1997, 25, 499.	2.0	49
15	Movement along a low-angle normal fault: The S reflector west of Spain. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	1.0	49
16	Nature of the S reflector beneath the Galicia Banks rifted margin: Preliminary results from prestack depth migration. Geology, 1992, 20, 1091.	2.0	45
17	The formation of passive margins: constraints from the crustal structure and segmentation of the deep Galicia margin, Spain. Geological Society Special Publication, 1995, 90, 71-91.	0.8	37
18	Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient (Washington, NW USA). Tectonics, 2008, 27, .	1.3	37

TIM RESTON

#	Article	IF	CITATIONS
19	Flipping detachments: The kinematics of ultraslow spreading ridges. Earth and Planetary Science Letters, 2018, 503, 144-157.	1.8	37
20	The Outer Hebrides fault: a major Proterozoic structure in NW Britain. Journal of the Geological Society, 1989, 146, 253-259.	0.9	33
21	The structure of Cretaceous oceanic crust of the NW Pacific: Constraints on processes at fast spreading centers. Journal of Geophysical Research, 1999, 104, 629-644.	3.3	31
22	Microearthquake seismicity of the Mid-Atlantic Ridge at 5°S: A view of tectonic extension. Journal of Geophysical Research, 2004, 109, .	3.3	31
23	The formation of non-volcanic rifted margins by the progressive extension of the lithosphere: the example of the West Iberian margin. Geological Society Special Publication, 2007, 282, 77-110.	0.8	31
24	Evidence for extensional shear zones in the mantle, offshore Britain, and their implications for the extension of the continental lithosphere. Tectonics, 1993, 12, 492-506.	1.3	30
25	An assessment of the cause of the †extension discrepancy' with reference to the west Galicia margin. Basin Research, 2014, 26, 135-153.	1.3	30
26	To see, or not to see? Rifted margin extension. Geology, 2015, 43, 967-970.	2.0	28
27	Detachment tectonics during Atlantic rifting: analysis and interpretation of the S reflection, the west Galicia margin. Geological Society Special Publication, 1995, 90, 93-109.	0.8	25
28	Resolving the fine-scale velocity structure of continental hyperextension at the Deep Galicia Margin using full-waveform inversion. Geophysical Journal International, 2018, 212, 244-263.	1.0	23
29	Deep structure of the Porcupine Basin from wide-angle seismic data. Petroleum Geology Conference Proceedings, 2018, 8, 199-209.	0.7	19
30	Constraints on crustal structure of adjacent OCCs and segment boundaries at 13°N on the Mid-Atlantic Ridge. Geophysical Journal International, 2019, 217, 988-1010.	1.0	18
31	From Continental Hyperextension to Seafloor Spreading: New Insights on the Porcupine Basin From Wideâ€Angle Seismic Data. Journal of Geophysical Research: Solid Earth, 2018, 123, 8312-8330.	1.4	16
32	Geometry of extensional faults developed at slow-spreading centres from pre-stack depth migration of seismic reflection data in the Central Atlantic (Canary Basin). Geophysical Journal International, 2004, 159, 591-606.	1.0	14
33	Waveform inversion of the S reflector west of Spain: Fine structure of a detachment fault. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	13
34	Detachment Faulting and Continental Breakup: The S Reflector Offshore Galicia. , 1995, , 231-246.		13
35	The Midâ€Atlantic Ridge Near 13°20′N: Highâ€Resolution Magnetic and Bathymetry Imaging. Geochemistry, Geophysics, Geosystems, 2019, 20, 295-313.	1.0	12
36	On the rotation and frictional lock-up of normal faults: Explaining the dip distribution of normal fault earthquakes and resolving the low-angle normal fault paradox. Tectonophysics, 2020, 790, 228550.	0.9	12

TIM RESTON

#	Article	IF	CITATIONS
37	Magmatism versus serpentinization—crustal structure along the 13°N segment at the Mid-Atlantic Ridge. Geophysical Journal International, 2020, 221, 981-1001.	1.0	10
38	Detachment and steep normal faulting in Atlantic oceanic crust west of Africa. Geology, 1996, 24, 811.	2.0	9
39	3-D P-wave velocity structure of oceanic core complexes at 13°N on the Mid-Atlantic Ridge. Geophysical Journal International, 2020, 221, 1555-1579.	1.0	9
40	The Structure of the Crust and Uppermost Mantle Offshore Britain: Deep Seismic Reflection Profiling and Crustal Cross-Sections. , 1990, , 603-621.		7
41	Interplay between magmatic accretion, spreading asymmetry and detachment faulting at a segment end: Crustal structure south of the Ascension Fracture Zone. Earth and Planetary Science Letters, 2015, 432, 84-94.	1.8	2