
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5628846/publications.pdf Version: 2024-02-01

FDIC C. PAMED

#	Article	IF	CITATIONS
1	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.	13.6	165
2	Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nature Medicine, 2022, 28, 713-723.	15.2	117
3	A compilation of fecal microbiome shotgun metagenomics from hematopoietic cell transplantation patients. Scientific Data, 2022, 9, 219.	2.4	11
4	Compositional Flux Within the Intestinal Microbiota and Risk for Bloodstream Infection With Gram-negative Bacteria. Clinical Infectious Diseases, 2021, 73, e4627-e4635.	2.9	74
5	Fecal microbiota diversity disruption and clinical outcomes after auto-HCT: a multicenter observational study. Blood, 2021, 137, 1527-1537.	0.6	42
6	Cervicovaginal bacterial communities in reproductive-aged Tanzanian women with <i>Schistosoma mansoni</i> , <i>Schistosoma haematobium</i> , or without schistosome infection. ISME Journal, 2021, 15, 1539-1550.	4.4	4
7	TAM mediates adaptation of carbapenem-resistant Klebsiella pneumoniae to antimicrobial stress during host colonization and infection. PLoS Pathogens, 2021, 17, e1009309.	2.1	10
8	Compilation of longitudinal microbiota data and hospitalome from hematopoietic cell transplantation patients. Scientific Data, 2021, 8, 71.	2.4	19
9	Rapid transcriptional and metabolic adaptation of intestinal microbes to host immune activation. Cell Host and Microbe, 2021, 29, 378-393.e5.	5.1	52
10	A multisite genomic epidemiology study of Clostridioides difficile infections in the USA supports differential roles of healthcare versus community spread for two common strains. Microbial Genomics, 2021, 7, .	1.0	6
11	Impact of Antibiotic-Resistant Bacteria on Immune Activation and Clostridioides difficile Infection in the Mouse Intestine. Infection and Immunity, 2020, 88, .	1.0	15
12	Enhancing mucosal immunity by transient microbiota depletion. Nature Communications, 2020, 11, 4475.	5.8	12
13	Functional and Genomic Variation between Human-Derived Isolates of Lachnospiraceae Reveals Inter- and Intra-Species Diversity. Cell Host and Microbe, 2020, 28, 134-146.e4.	5.1	210
14	Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. New England Journal of Medicine, 2020, 382, 822-834.	13.9	435
15	Antibiotic Degradation by Commensal Microbes Shields Pathogens. Infection and Immunity, 2020, 88, .	1.0	17
16	The microbe-derived short-chain fatty acids butyrate and propionate are associated with protection from chronic GVHD. Blood, 2020, 136, 130-136.	0.6	97
17	Outbreaks of Typhlocolitis Caused by Hypervirulent Group ST1 Clostridioides difficile in Highly Immunocompromised Strains of Mice. Comparative Medicine, 2020, 70, 277-290.	0.4	5
18	Monocyte Reconstitution and Gut Microbiota Composition after Hematopoietic Stem Cell Transplantation. Clinical Hematology International, 2020, 2, 156.	0.7	4

#	Article	IF	CITATIONS
19	Gut microbiota dysbiosis and diarrhea in kidney transplant recipients. American Journal of Transplantation, 2019, 19, 488-500.	2.6	70
20	Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunology, 2019, 12, 1-9.	2.7	177
21	Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature, 2019, 572, 665-669.	13.7	176
22	Butyrateâ€producing gut bacteria and viral infections in kidney transplant recipients: A pilot study. Transplant Infectious Disease, 2019, 21, e13180.	0.7	41
23	Gastrointestinal pathogen colonization and the microbiome in asymptomatic kidney transplant recipients. Transplant Infectious Disease, 2019, 21, e13167.	0.7	21
24	Diversification and Evolution of Vancomycin-Resistant Enterococcus faecium during Intestinal Domination. Infection and Immunity, 2019, 87, .	1.0	33
25	Intestinal Bile Acids Induce a Morphotype Switch in Vancomycin-Resistant Enterococcus that Facilitates Intestinal Colonization. Cell Host and Microbe, 2019, 25, 695-705.e5.	5.1	45
26	Genome-Wide Screening for Enteric Colonization Factors in Carbapenem-Resistant ST258 Klebsiella pneumoniae. MBio, 2019, 10, .	1.8	32
27	Minimal residual disease negativity in multiple myeloma is associated with intestinal microbiota composition. Blood Advances, 2019, 3, 2040-2044.	2.5	50
28	Lactose drives <i>Enterococcus</i> expansion to promote graft-versus-host disease. Science, 2019, 366, 1143-1149.	6.0	217
29	Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nature Communications, 2019, 10, 5521.	5.8	123
30	Inhibiting antibiotic-resistant Enterobacteriaceae by microbiota-mediated intracellular acidification. Journal of Experimental Medicine, 2019, 216, 84-98.	4.2	135
31	Enlisting commensal microbes to resist antibiotic-resistant pathogens. Journal of Experimental Medicine, 2019, 216, 10-19.	4.2	51
32	Impact of gut colonization with butyrate producing microbiota on respiratory viral infection following allo-HCT. Blood, 2018, 131, blood-2018-01-828996.	0.6	155
33	Nutritional Support from the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Cell Host and Microbe, 2018, 23, 447-457.e4.	5.1	86
34	Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Advances, 2018, 2, 745-753.	2.5	167
35	Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Science Translational Medicine, 2018, 10, .	5.8	258
36	The effects of amine-modified single-walled carbon nanotubes on the mouse microbiota. International Journal of Nanomedicine, 2018, Volume 13, 5275-5286.	3.3	2

#	Article	IF	CITATIONS
37	Enterococci and Their Interactions with the Intestinal Microbiome. , 2018, , 309-330.		7
38	Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen. Pathogens, 2018, 7, 1.	1.2	40
39	A protective Langerhans cell–keratinocyte axis that is dysfunctional in photosensitivity. Science Translational Medicine, 2018, 10, .	5.8	48
40	Loss of Microbiota Diversity after Autologous Stem Cell Transplant Is Comparable to Injury in Allogeneic Stem Cell Transplant. Blood, 2018, 132, 608-608.	0.6	9
41	Distinct behavior of myelomonocytic cells and CD8 T cells underlies the hepatic response to Listeria monocytogenes. Wellcome Open Research, 2018, 3, 48.	0.9	3
42	Microbiota Disruption Induced by Early Use of Broad-Spectrum Antibiotics Is an Independent Risk Factor of Outcome after Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, 845-852.	2.0	183
43	Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant Enterococcus faecium. Cell Host and Microbe, 2017, 21, 592-602.e4.	5.1	237
44	Microbiota-Based Therapies for <i>Clostridium difficile</i> and Antibiotic-Resistant Enteric Infections. Annual Review of Microbiology, 2017, 71, 157-178.	2.9	45
45	Commensal microbes provide first line defense against <i>Listeria monocytogenes</i> infection. Journal of Experimental Medicine, 2017, 214, 1973-1989.	4.2	173
46	A spoonful of sugar could be the medicine. Nature, 2017, 546, 479-480.	13.7	3
47	Protective Factors in the Intestinal Microbiome Against Clostridium difficile Infection in Recipients of Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Infectious Diseases, 2017, 215, 1117-1123.	1.9	81
48	Inflammatory Monocytes Promote Perineural Invasion via CCL2-Mediated Recruitment and Cathepsin B Expression. Cancer Research, 2017, 77, 6400-6414.	0.4	73
49	The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunological Reviews, 2017, 279, 90-105.	2.8	490
50	The oral microbiota in patients with pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes and Control, 2017, 28, 959-969.	0.8	69
51	Pathogenicity Locus, Core Genome, and Accessory Gene Contributions to <i>Clostridium difficile</i> Virulence. MBio, 2017, 8, .	1.8	51
52	Enterococci and Their Interactions with the Intestinal Microbiome. Microbiology Spectrum, 2017, 5, .	1.2	131
53	Short- and long-term effects of oral vancomycin on the human intestinal microbiota. Journal of Antimicrobial Chemotherapy, 2017, 72, 128-136.	1.3	233
54	Intestinal Microbiota and Relapse After Hematopoietic-Cell Transplantation. Journal of Clinical Oncology, 2017, 35, 1650-1659.	0.8	252

#	Article	IF	CITATIONS
55	Innate Lymphocyte/Ly6C hi Monocyte Crosstalk Promotes Klebsiella Pneumoniae Clearance. Cell, 2016, 165, 679-689.	13.5	147
56	Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science, 2016, 352, 535-538.	6.0	341
57	Microbiome mediation of infections in the cancer setting. Genome Medicine, 2016, 8, 40.	3.6	71
58	Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends in Molecular Medicine, 2016, 22, 458-478.	3.5	630
59	Celecoxib Alters the Intestinal Microbiota and Metabolome in Association with Reducing Polyp Burden. Cancer Prevention Research, 2016, 9, 721-731.	0.7	35
60	Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiology, 2016, 14, 609-620.	13.6	436
61	Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 2016, 8, 339ra71.	5.8	404
62	Transmission of Clostridium difficile During Hospitalization for Allogeneic Stem Cell Transplant. Infection Control and Hospital Epidemiology, 2016, 37, 8-15.	1.0	24
63	Complete Genome Sequence of Enterococcus faecium ATCC 700221. Genome Announcements, 2016, 4, .	0.8	9
64	Bile acid sensitivity and inÂvivo virulence of clinical Clostridium difficile isolates. Anaerobe, 2016, 41, 32-36.	1.0	25
65	Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. Journal of Experimental Medicine, 2016, 213, 517-534.	4.2	110
66	Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδT cells. Nature Medicine, 2016, 22, 516-523.	15.2	770
67	Control of T cell antigen reactivity via programmed TCR downregulation. Nature Immunology, 2016, 17, 379-386.	7.0	79
68	Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nature Communications, 2016, 7, 10391.	5.8	784
69	TLR-7 activation enhances IL-22–mediated colonization resistance against vancomycin-resistant enterococcus. Science Translational Medicine, 2016, 8, 327ra25.	5.8	77
70	Distinct but Spatially Overlapping Intestinal Niches for Vancomycin-Resistant Enterococcus faecium and Carbapenem-Resistant Klebsiella pneumoniae. PLoS Pathogens, 2015, 11, e1005132.	2.1	100
71	From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell, 2015, 163, 1326-1332.	13.5	156
72	Microbiota-Mediated Inflammation and Antimicrobial Defense in the Intestine. Annual Review of Immunology, 2015, 33, 227-256.	9.5	227

#	Article	IF	CITATIONS
73	Distinct Contributions of Neutrophils and CCR2 ⁺ Monocytes to Pulmonary Clearance of Different Klebsiella pneumoniae Strains. Infection and Immunity, 2015, 83, 3418-3427.	1.0	115
74	Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection. Cell Host and Microbe, 2015, 18, 27-37.	5.1	240
75	Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, 1373-1383.	2.0	619
76	Loss of Microbiota-Mediated Colonization Resistance to <i>Clostridium difficile</i> Infection With Oral Vancomycin Compared With Metronidazole. Journal of Infectious Diseases, 2015, 212, 1656-1665.	1.9	157
77	Role of intestinal microbiota in transplantation outcomes. Best Practice and Research in Clinical Haematology, 2015, 28, 155-161.	0.7	50
78	Could microbial therapy boost cancer immunotherapy?. Science, 2015, 350, 1031-1032.	6.0	36
79	Monocytes and infection: Modulator, messenger and effector. Immunobiology, 2015, 220, 210-214.	0.8	51
80	Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature, 2015, 517, 205-208.	13.7	1,506
81	Gut Microbiota and Tacrolimus Dosing in Kidney Transplantation. PLoS ONE, 2015, 10, e0122399.	1.1	133
82	Identification of the gastric microbiome from endoscopic biopsy samples using whole genome sequencing Journal of Clinical Oncology, 2015, 33, 8-8.	0.8	0
83	Immunological Memory and Infection. , 2014, , 175-189.		4
84	Commensal bacteria mediated defenses against pathogens. Current Opinion in Immunology, 2014, 29, 16-22.	2.4	115
85	Harnessing Microbiota to Kill a Pathogen: Fixing the microbiota to treat Clostridium difficile infections. Nature Medicine, 2014, 20, 246-247.	15.2	42
86	The cellular and molecular origin of tumor-associated macrophages. Science, 2014, 344, 921-925.	6.0	1,071
87	Fecal microbiota transplantation: effectiveness, complexities, and lingering concerns. Mucosal Immunology, 2014, 7, 210-214.	2.7	101
88	Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. Journal of Experimental Medicine, 2014, 211, 1723-1731.	4.2	219
89	The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood, 2014, 124, 1174-1182.	0.6	711
90	Impact of the Intestinal Microbiota on Infections and Survival Following Hematopoietic Stem Cell Transplantation. Blood, 2014, 124, SCI-48-SCI-48.	0.6	8

#	Article	IF	CITATIONS
91	Early Clostridium difficile Infection during Allogeneic Hematopoietic Stem Cell Transplantation. PLoS ONE, 2014, 9, e90158.	1.1	69
92	Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 2013, 13, 790-801.	10.6	1,138
93	The intestinal microbiota and susceptibility to infection in immunocompromised patients. Current Opinion in Infectious Diseases, 2013, 26, 332-337.	1.3	114
94	Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization. Infection and Immunity, 2013, 81, 965-973.	1.0	391
95	Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota. PLoS Computational Biology, 2013, 9, e1003388.	1.5	487
96	Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. ELife, 2013, 2, e01202.	2.8	1,507
97	Profound Alterations of Intestinal Microbiota following a Single Dose of Clindamycin Results in Sustained Susceptibility to Clostridium difficile-Induced Colitis. Infection and Immunity, 2012, 80, 62-73.	1.0	473
98	Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. Journal of Experimental Medicine, 2012, 209, 903-911.	4.2	552
99	Critical Role for MyD88-Mediated Neutrophil Recruitment during Clostridium difficile Colitis. Infection and Immunity, 2012, 80, 2989-2996.	1.0	132
100	Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. Journal of Experimental Medicine, 2012, 209, 1445-1456.	4.2	295
101	Intestinal Domination and the Risk of Bacteremia in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clinical Infectious Diseases, 2012, 55, 905-914.	2.9	779
102	Interleukin 23 Production by Intestinal CD103+CD11b+ Dendritic Cells in Response to Bacterial Flagellin Enhances Mucosal Innate Immune Defense. Immunity, 2012, 36, 276-287.	6.6	450
103	Toll-Like Receptor 5 Stimulation Protects Mice from Acute <i>Clostridium difficile</i> Colitis. Infection and Immunity, 2011, 79, 1498-1503.	1.0	120
104	Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. Journal of Clinical Investigation, 2010, 120, 4332-4341.	3.9	756
105	Bacterial Flagellin Stimulates Tollâ€Like Receptor 5–Dependent Defense against Vancomycinâ€Resistant <i>Enterococcus</i> Infection. Journal of Infectious Diseases, 2010, 201, 534-543.	1.9	209
106	The Changing Epidemiology of Vancomycin-Resistant Enterococcus (VRE) Bacteremia in Allogeneic Hematopoietic Stem Cell Transplant (HSCT) Recipients. Biology of Blood and Marrow Transplantation, 2010, 16, 1576-1581.	2.0	118
107	Tipping the balance in favor of protective immunity during influenza virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4961-4962.	3.3	23
108	Inflammatory Monocytes Facilitate Adaptive CD4 T Cell Responses during Respiratory Fungal Infection. Cell Host and Microbe, 2009, 6, 470-481.	5.1	301

1

#	Article	IF	CITATIONS
109	Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature, 2008, 455, 804-807.	13.7	553
110	MyD88-mediated signals induce the bactericidal lectin RegIIIÎ ³ and protect mice against intestinal <i>Listeria monocytogenes</i> infection. Journal of Experimental Medicine, 2007, 204, 1891-1900.	4.2	342
111	Immune responses to commensal and environmental microbes. Nature Immunology, 2007, 8, 1173-1178.	7.0	150
112	Immune responses to Listeria monocytogenes. Nature Reviews Immunology, 2004, 4, 812-823.	10.6	726
113	Intestinal and Splenic T Cell Responses to Enteric <i>Listeria monocytogenes</i> Infection: Distinct Repertoires of Responding CD8 T Lymphocytes. Journal of Immunology, 2001, 166, 4065-4073.	0.4	64

114 CD4+ T-Cell Responses to Aspergillus fumigatus. , 0, , 263-277.