
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5628684/publications.pdf Version: 2024-02-01

Μαρινά Ρορεςτά

#	Article	lF	CITATIONS
1	Immunotherapeutic Strategies for Neuroblastoma: Present, Past and Future. Vaccines, 2021, 9, 43.	4.4	18
2	Identification of Biochemical and Molecular Markers of Early Aging in Childhood Cancer Survivors. Cancers, 2021, 13, 5214.	3.7	5
3	Genomic coamplification of <i>CDK4</i> / <i>MDM2</i> / <i>FRS2</i> is associated with very poor prognosis and atypical clinical features in neuroblastoma patients. Genes Chromosomes and Cancer, 2020, 59, 277-285.	2.8	19
4	Bclâ€xL represents a therapeutic target in Philadelphia negative myeloproliferative neoplasms. Journal of Cellular and Molecular Medicine, 2020, 24, 10978-10986.	3.6	23
5	Transplantation Induces Profound Changes in the Transcriptional Asset of Hematopoietic Stem Cells: Identification of Specific Signatures Using Machine Learning Techniques. Journal of Clinical Medicine, 2020, 9, 1670.	2.4	4
6	Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: results from the multicenter FISM BIOFER study. Scientific Reports, 2020, 10, 9156.	3.3	9
7	Identification of a minimal region of loss on chromosome 6q27 associated with poor survival of high-risk neuroblastoma patients. Cancer Biology and Therapy, 2020, 21, 391-399.	3.4	14
8	Discrete Changes in Glucose Metabolism Define Aging. Scientific Reports, 2019, 9, 10347.	3.3	42
9	Role of GOLPH3 and TPX2 in Neuroblastoma DNA Damage Response and Cell Resistance to Chemotherapy. International Journal of Molecular Sciences, 2019, 20, 4764.	4.1	16
10	Mesenchymal stem cells from preterm to term newborns undergo a significant switch from anaerobic glycolysis to the oxidative phosphorylation. Cellular and Molecular Life Sciences, 2018, 75, 889-903.	5.4	26
11	Clonal haematopoiesis is not prevalent in survivors of childhood cancer. British Journal of Haematology, 2018, 181, 537-539.	2.5	12
12	MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation. Oncotarget, 2016, 7, 6676-6692.	1.8	86
13	Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants. FASEB Journal, 2016, 30, 1416-1424.	0.5	63
14	Preterm Cord Blood Contains a Higher Proportion of Immature Hematopoietic Progenitors Compared to Term Samples. PLoS ONE, 2015, 10, e0138680.	2.5	24
15	Allogeneic cell transplant expands bone marrow distribution by colonizing previously abandoned areas: an FDG PET/CT analysis. Blood, 2015, 125, 4095-4102.	1.4	23
16	Impact of length of cryopreservation and origin of cord blood units on hematologic recovery following cord blood transplantation. Bone Marrow Transplantation, 2015, 50, 818-821.	2.4	6
17	Exposure of Cord Blood Hematopoietic Stem Cells to Bone Marrow Mesenchimal Cells-Derived Microvesicles Induces Cell Survival and Inhibition of Differentiation. Blood, 2014, 124, 4364-4364.	1.4	1
18	New possibilities to exploit the potentiality of cord blood cells in the context of transplantation. Immunology Letters, 2013, 155, 24-26.	2.5	0

#	Article	IF	CITATIONS
19	Unrelated Cord Blood Transplantation. Transplantation, 2013, 95, 1284-1291.	1.0	66
20	Differential effects of the type of iron chelator on the absolute number of hematopoietic peripheral progenitors in patients with Â-thalassemia major. Haematologica, 2013, 98, 555-559.	3.5	12
21	Intrabone Transplant of Cord Blood Stem Cells Establishes a Local Engraftment Store: A Functional PET/FDG Study. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	8
22	Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus?. Blood, 2012, 119, 399-410.	1.4	241
23	Iron Chelation Therapy and Mobilization of Hematopoietic Peripheral Progenitors in Patients with β-Thalassemia Major. Blood, 2012, 120, 5178-5178.	1.4	Ο
24	Contact with the bone marrow microenvironment readdresses the fate of transplanted hematopoietic stem cells. Experimental Hematology, 2010, 38, 968-977.	0.4	21
25	p38 MAPK and JNK Antagonistically Control Senescence and Cytoplasmic p16INK4A Expression in Doxorubicin-Treated Endothelial Progenitor Cells. PLoS ONE, 2010, 5, e15583.	2.5	70
26	The intra-bone marrow injection of cord blood cells extends the possibility of transplantation to the majority of patients with malignant hematopoietic diseases. Best Practice and Research in Clinical Haematology, 2010, 23, 237-244.	1.7	29
27	The association of human mesenchymal stem cells with BMP-7 improves bone regeneration of critical-size segmental bone defects in athymic rats. Bone, 2010, 47, 117-126.	2.9	75
28	Unrelated Cord Blood Transplantation: Comparison After Single Unit Cord Blood Intrabone Injection and Double Unit Cord Blood Transplantation In Patients with Hematological Malignant Disorders. A Eurocord-EBMT Analysis. Blood, 2010, 116, 223-223.	1.4	4
29	The Plant Hormone Abscisic Acid Stimulates the Proliferation of Human Hemopoietic Progenitors through the Second Messenger Cyclic ADP-Ribose. Stem Cells, 2009, 27, 2469-2477.	3.2	38
30	Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality. Bone Marrow Transplantation, 2008, 41, 55-62.	2.4	83
31	Direct intrabone transplant of unrelated cord-blood cells in acute leukaemia: a phase I/II study. Lancet Oncology, The, 2008, 9, 831-839.	10.7	244
32	Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica, 2008, 93, 339-346.	3.5	159
33	A High Sensitivity Detection Technique Reveals JAK2-V617F Mutation in Additional 20% of Patients with Essential Thrombocytemia, but Not in Patients with Primary Myelofibrosis, Considered Negative with a Conventional ASO-PCR. Blood, 2008, 112, 2801-2801.	1.4	0
34	Induction and Survival of Binucleated Purkinje Neurons by Selective Damage and Aging. Journal of Neuroscience, 2007, 27, 9885-9892.	3.6	42
35	SEX DIFFERENCES IN HUMAN LYMPHOCYTE Na,K-ATPase AS STUDIED BY LABELED OUABAIN BINDING. International Journal of Neuroscience, 2007, 117, 275-285.	1.6	2
36	Allogeneic hemopoietic stem cell transplants for patients with relapsed acute leukemia: long-term outcome. Bone Marrow Transplantation, 2007, 39, 341-346.	2.4	10

#	Article	IF	CITATIONS
37	Abnormalities of Na/K ATPase in Migraine With Aura. Cephalalgia, 2007, 27, 128-132.	3.9	8
38	Association of ex-vivo expanded human mesenchymal stem cells and rhBMP-7 is highly effective in treating critical femoral defect in rats. Journal of Orthopaedics and Traumatology, 2007, 8, 49-54.	2.3	4
39	Direct Intra-Bone Injection of Unrelated Cord Blood Cells Overcomes the Problem of Delayed Engraftment and Improves the Feasibility of Hematopoietic Transplant in Adult Patients Blood, 2007, 110, 334-334.	1.4	13
40	Modulated Expression of BCL-xL and GATA-1 Genes Is a Common Feature in Myeloproliferative Disorders (MPD) Both in JAK2-V617F Positive and Negative Patients. Blood, 2007, 110, 1533-1533.	1.4	0
41	Allogeneic bone marrow transplantation (BMT) for refractory Behçet's disease with severe CNS involvement. Bone Marrow Transplantation, 2006, 37, 1061-1063.	2.4	34
42	Progenitor cells trapped in marrow filters can reduce GvHD and transplant mortality. Bone Marrow Transplantation, 2006, 38, 111-117.	2.4	11
43	Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation. Experimental Hematology, 2006, 34, 934-942.	0.4	42
44	Direct Intra-Bone Marrow Transplant of Cord Blood Cells: A Way To Overcome Delayed Engraftment Blood, 2006, 108, 3190-3190.	1.4	3
45	Boost of CD34+-selected peripheral blood cells without further conditioning in patients with poor graft function following allogeneic stem cell transplantation. Haematologica, 2006, 91, 935-40.	3.5	95
46	T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Experimental Hematology, 2005, 33, 819-827.	0.4	109
47	Concentrative Uptake of Cyclic ADP-ribose Generated by BST-1+ Stroma Stimulates Proliferation of Human Hematopoietic Progenitors. Journal of Biological Chemistry, 2005, 280, 5343-5349.	3.4	43
48	Human Mesenchymal Stem Cells and Cyclosporin A Exert a Synergistic Suppressive Effect on In Vitro Activation of Alloantigen-Specific Cytotoxic Lymphocytes. Biology of Blood and Marrow Transplantation, 2005, 11, 1031-1032.	2.0	51
49	The Persistence of p190 BCR-ABL Transcripts Is Associated with Lower Probability of Molecular Response to Imatinib in Early and Late Chronic Phase CML Patients Blood, 2005, 106, 3282-3282.	1.4	0
50	Molecular Responders (<3-log Reduction) among CML Patients in Complete Cytogenetic Remission Show a Lower Number of BCR-ABL+ Hematopoietic Progenitors Compared to Non-Responders Blood, 2005, 106, 4325-4325.	1.4	0
51	Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 2005, 90, 516-25.	3.5	444
52	Intra–bone marrow injection of bone marrow and cord blood cells: an alternative way of transplantation associated with a higher seeding efficiency. Experimental Hematology, 2004, 32, 782-787.	0.4	76
53	Reducing transplant-related mortality after allogeneic hematopoietic stem cell transplantation. Haematologica, 2004, 89, 1238-47.	3.5	62
54	Freshly dissociated fetal neural stem/progenitor cells do not turn into blood. Molecular and Cellular Neurosciences, 2003, 22, 179-187.	2.2	29

#	Article	IF	CITATIONS
55	Cyclic ADPâ€ribose generation by CD38 improves human hemopoietic stem cell engraftment into NOD/SCID mice. FASEB Journal, 2003, 17, 310-312.	0.5	21
56	Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood, 2003, 102, 1138-1141.	1.4	76
57	Prophylactic antithymocyte globulin reduces the risk of chronic graft-versus-host disease in alternative-donor bone marrow transplants. Biology of Blood and Marrow Transplantation, 2002, 8, 656-661.	2.0	50
58	Transplantation hematopoiesis. Current Opinion in Hematology, 2001, 8, 331-336.	2.5	9
59	High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors. Cancer, 2001, 92, 2419-2428.	4.1	128
60	Modified in vitro conditions for cord blood–derived long-term culture-initiating cells. Experimental Hematology, 2001, 29, 309-314.	0.4	8
61	Stromaâ€generated cyclic ADPâ€ribose stimulates the expansion of early human hemopoietic progenitors by a paracrine interaction. FASEB Journal, 2001, 15, 1610-1612.	0.5	37
62	Interferon-α protects Philadelphia-negative progenitors from exhaustion in chronic myeloid leukemia patients with cytogenetic response. The Hematology Journal, 2001, 2, 26-32.	1.4	2
63	The retroviral transduction of HOXC4 into human CD34+ cells induces an in vitro expansion of clonogenic and early progenitors. Experimental Hematology, 2000, 28, 569-574.	0.4	44
64	Autografting with Ph-negative progenitors in patients at diagnosis of chronic myeloid leukemia induces a prolonged prevalence of Ph-negative hemopoiesis. Experimental Hematology, 2000, 28, 210-215.	0.4	5
65	Extracellular cyclic ADPâ€ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB Journal, 2000, 14, 680-690.	0.5	72
66	Normal primitive haemopoietic progenitors are more frequent than their leukaemic counterpart in newly diagnosed patients with chronic myeloid leukaemia but rapidly decline with time. British Journal of Haematology, 1999, 104, 538-545.	2.5	11
67	Coexistence of normal and clonal haemopoiesis in aplastic anaemia patients treated with immunosuppressive therapy. British Journal of Haematology, 1999, 107, 505-511.	2.5	27
68	Relapse after allogeneic BMT for chronic myeloid leukemia (CML) may be sustained by a small number of leukemic â€~stem cells': a hypothesis. Bone Marrow Transplantation, 1999, 24, 689-691.	2.4	1
69	Stromal damage as consequence of high-dose chemo/radiotherapy in bone marrow transplant recipients. Experimental Hematology, 1999, 27, 1460-1466.	0.4	261
70	Normal and leukaemic haematopoiesis in bone marrow and peripheral blood of patients with chronic myeloid leukaemia. Best Practice and Research in Clinical Haematology, 1999, 12, 199-208.	1.7	3
71	Autografting With Philadelphia Chromosome–Negative Mobilized Hematopoietic Progenitor Cells in Chronic Myelogenous Leukemia. Blood, 1999, 93, 1534-1539.	1.4	2
72	Peripheral blood progenitor cells mobilized early at diagnosis in patients with chronic myelogenous leukemia contain very low amounts of BCR-ABL transcripts. Leukemia, 1998, 12, 998-999.	7.2	6

#	Article	IF	CITATIONS
73	Comparable TNFâ€alpha, IFNâ€gamma and GM–CSF production by purified normal marrow CD3 cells in response to horse antiâ€lymphocyte and rabbit antithymocyte globulin. European Journal of Haematology, 1998, 60, 240-244.	2.2	11
74	Mobilization and transplantation of Philadelphia-negative peripheral-blood progenitor cells early in chronic myelogenous leukemia Journal of Clinical Oncology, 1997, 15, 1575-1582.	1.6	68
75	Deficient reconstitution of early progenitors after allogeneic bone marrow transplantation. Bone Marrow Transplantation, 1997, 19, 1011-1017.	2.4	38
76	Transplantation of HLAâ€mismatched CD34 + selected cells in patients with advanced malignancies: severe immunodeficiency and related complications. British Journal of Haematology, 1997, 98, 760-766.	2.5	31
77	Spontaneous exodus of high numbers of normal early progenitor cells (Phâ€negative LTCâ€IC) in the peripheral blood of patients with chronic myeloid leukaemia at the beginning of the disease. British Journal of Haematology, 1997, 97, 94-98.	2.5	10
78	IN VIVO MOBILIZATION OF KARYOTyPICALLY NORMAL PERIPHERAL BLOOD PROGENITOR CELLS IN HIGHâ€RISK MDS, SECONDARY OR THERAPYâ€RELATED ACUTE MYELOGENOUS LEUKAEMIA. British Journal of Haematology, 1996, 95, 127-130.	2.5	68
79	Mobilization/transplantation of Ph1-negative blood progenitor cells in chronic myelogenous leukaemia. Annals of Oncology, 1996, 7, 19-22.	1.2	2
80	Restoration of normal polyclonal haemopoiesis in patients with chronic myeloid leukaemia autografted with Phâ€negative peripheral stem cells. British Journal of Haematology, 1994, 87, 867-870.	2.5	28
81	Idarubicin, Intermediate-Dose Cytarabine, Etoposide, and Granulocyte-Colony-Stimulating Factor Are Able to Recruit CD34+/HLA-DR-Cells During Early Hematopoietic Recovery in Accelerated and Chronic Phases of Chronic Myeloid Leukemia. Stem Cells and Development, 1994, 3, 199-202.	1.0	17
82	Selective overshoot of ph‐negative blood hemopoietic cells after intensive idarubicin‐containing regimen and their repopulating capacity after reinfusion. Stem Cells, 1993, 11, 67-72.	3.2	17
83	Mobilization of Cytogenetically â€`Normal' Blood Progenitors Cells by Intensive Conventional Chemotherapy for Chronic Myeloid and Acute Lymphoblastic Leukemia. Leukemia and Lymphoma, 1993, 9, 477-483.	1.3	35
84	In vitro effect of stem cell factor on colony growth from acquired severe aplastic anemia. Stem Cells, 1993, 11, 175-179.	3.2	2
85	"Normal―Peripheral Blood Stem Cells (PBSC) Mobilization by Myelosuppressive Chemotherapy in Very High-Risk Acute Lymphoblastic Leukemia (ALL) with Cytogenetic Translocations. Leukemia and Lymphoma, 1992, 7, 19-21.	1.3	5
86	Autologous and allogeneic bone marrow transplantation in acute myeloid leukemia in first complete remission: an update of the Genoa experience with 159 patients. Annals of Hematology, 1992, 64, 128-131.	1.8	29
87	Human serum-dependent survival of GM-CFCs in vitro from patients with chronic granulocytic leukemia. Leukemia Research, 1987, 11, 3-6.	0.8	3
88	Competitive survival/proliferation of normal and Ph1-positive haemopoietic cells. British Journal of Haematology, 1986, 63, 135-141.	2.5	15
89	In vitro tests in severe aplastic anaemia (SAA): a prospective study in 46 patients treated with immunosuppression. British Journal of Haematology, 1985, 59, 611-616.	2.5	5
90	T-Derived Colony-Inhibiting Activity: Partial Characterization and Mechanism of Action. Acta Haematologica, 1985, 74, 195-199.	1.4	2

#	Article	IF	CITATIONS
91	Cyclosporin A (CyA) does not enhance CFUâ€c growth in patients with severe aplastic anaemia. Scandinavian Journal of Haematology, 1985, 34, 133-136.	0.0	3
92	A New Unusual Translocation Involving the Short Arms of Chromosome 19 in Ph1-Positive Chronic Myeloid Leukemia. Acta Haematologica, 1984, 71, 124-127.	1.4	1
93	Recurrence of Ph′-Positive Leukemia in Donor Cells after Marrow Transplantation for Chronic Granulocytic Leukemia. New England Journal of Medicine, 1984, 310, 903-906.	27.0	83
94	High dose bolus methylprednisolone for the treatment of acute graft versus host disease. Blut, 1983, 46, 125-132.	1.2	48
95	Mepartricin: A New Antifungal Agent for the Treatment of Disseminated Candida Infections in the Immunocompromised Host. Acta Haematologica, 1983, 69, 409-413.	1.4	4
96	Generation of CFU-C Suppressor T Cells. Acta Haematologica, 1983, 70, 163-169.	1.4	8
97	GM-CFC growth in chronic granulocytic leukaemia is not affected by a soluble inhibitor released by aplastic anaemia T-cells or mitogen-primed normal T-lymphocytes. British Journal of Haematology, 1982, 50, 647-653.	2.5	3
98	Generation of CFU-C suppressor T cells in vitro: V. A. MULTISTEP PROCESS. British Journal of Haematology, 1982, 52, 421-427.	2.5	23
99	Imbalance of T-cell subpopulations and defective pokeweed mitogen-induced B-cell differentiation after bone marrow transplantation in man. Clinical Immunology and Immunopathology, 1981, 20, 137-145.	2.0	15
100	Tobramycin versus Gentamicin, in Combination with Cephalotin and Carbenecillin, in Patients Undergoing Bone Marrow Transplantation. Tumori, 1981, 67, 525-532.	1.1	3
101	High Dose BCNU Followed by Autologous Bone Marrow Infusion in Glioblastoma Multiforme. Tumori, 1981, 67, 473-475.	1.1	16
102	Severe Aplastic Anaemia: Correlation of in Vitro Tests with Clinical Response to Immunosuppression in 20 Patients. British Journal of Haematology, 1981, 47, 423-433.	2.5	78
103	Generation of CFU-C/suppressor T cells in vitro: an experimental model for immune-mediated marrow failure. Blood, 1981, 57, 491-496.	1.4	7
104	Lymphoid antigens (LY) on leukaemic cell populations: Recognition by means of antilymphocytic globulins and clinical implications. Leukemia Research, 1979, 3, 305-313.	0.8	2