
Jan Sedlacek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5628187/publications.pdf Version: 2024-02-01

IAN SEDLACER

#	Article	IF	CITATIONS
1	Microporous polymers prepared from non-porous hyper-cross-linked networks by removing covalently attached template molecules. Microporous and Mesoporous Materials, 2022, 330, 111636.	4.4	6
2	Microporous Hyperâ€Crossâ€Linked Polymers with High and Tuneable Content of Pyridine Units: Synthesis and Application for Reversible Sorption of Water and Carbon Dioxide. Macromolecular Rapid Communications, 2021, 42, e2100209.	3.9	7
3	Sulfonated Hyperâ€crossâ€linked Porous Polyacetylene Networks as Versatile Heterogeneous Acid Catalysts. ChemCatChem, 2020, 12, 1075-1084.	3.7	14
4	Microporous hyper-cross-linked polyacetylene networks: Covalent structure and texture modification by reversible Schiff-base chemistry. European Polymer Journal, 2020, 136, 109914.	5.4	4
5	A novel application of terminal alkynes as the homogeneous catalysts for acetalization and esterification. Tetrahedron, 2019, 75, 2877-2882.	1.9	4
6	Synthesis of hyper-cross-linked microporous poly(phenylacetylene)s having aldehyde and other groups and their chemisorption and physisorption ability. European Polymer Journal, 2019, 114, 279-286.	5.4	9
7	Homo―and Copolycyclotrimerization of Aromatic Internal Diynes Catalyzed with Co ₂ (CO) ₈ : A Facile Route to Microporous Photoluminescent Polyphenylenes with Hyperbranched or Crosslinked Architecture. Macromolecular Rapid Communications, 2018, 39, 1700518.	3.9	11
8	Hyperâ€Crossâ€Linked Polyacetyleneâ€Type Microporous Networks Decorated with Terminal Ethynyl Groups as Heterogeneous Acid Catalysts for Acetalization and Esterification Reactions. Chemistry - A European Journal, 2018, 24, 14742-14749.	3.3	23
9	Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers. Polymer Reviews, 2017, 57, 31-51.	10.9	31
10	Unexpectedly Facile Rh(I) Catalyzed Polymerization of Ethynylbenzaldehyde Type Monomers: Synthesis of Polyacetylenes Bearing Reactive and Easy Transformable Pendant Carbaldehyde Groups. Macromolecular Rapid Communications, 2017, 38, 1600792.	3.9	5
11	The capacity and effectiveness of diosmectite and charcoal in trapping the compounds causing the most frequent intoxications in acute medicine: A comparative study. Environmental Toxicology and Pharmacology, 2017, 52, 214-220.	4.0	6
12	Microporous conjugated polymers via homopolymerization of 2,5-diethynylthiophene. European Polymer Journal, 2017, 92, 213-219.	5.4	15
13	Ionic π-Conjugated Polymer Networks by Catalyst-Free Polymerization, Photoluminescence and Gas Sorption Behavior. Macromolecular Chemistry and Physics, 2016, 217, 1886-1898.	2.2	2
14	SEC-DAD - Effective Method for the Characterization of π-Conjugated Polymers. Materials Science Forum, 2016, 851, 167-172.	0.3	3
15	Ionic Ï€â€Conjugated Polyelectrolytes by Catalyst Free Polymerization of Bis(pyridyl)acetylenes and Bis[(pyridyl)ethynyl]benzenes. Macromolecular Chemistry and Physics, 2015, 216, 1540-1554.	2.2	4
16	Copolymerization of <i>N</i> -(prop-1-yne-3-yl)-4-(piperidine-1-yl)-1,8-naphthalimide with Arylacetylenes into Fluorescent Polyacetylene-Type Conjugated Polymers. Macromolecular Chemistry and Physics, 2015, 216, 2115-2128.	2.2	11
17	Chain-growth copolymerization of functionalized ethynylarenes with 1,4-diethynylbenzene and 4,4′-diethynylbiphenyl into conjugated porous networks. European Polymer Journal, 2015, 67, 252-263.	5.4	12
18	Aromatic Schiff Bases Multiply Substituted with Terminal Ethynyl Groups: Potential Building Blocks for Conjugated Polymers and Oligomers. Australian Journal of Chemistry, 2015, 68, 1237.	0.9	0

#	Article	IF	CITATIONS
19	Transitionâ€Metalâ€Catalyzed Chainâ€Growth Polymerization of 1,4â€Diethynylbenzene into Microporous Crosslinked Poly(phenylacetylene)s: the Effect of Reaction Conditions. Macromolecular Chemistry and Physics, 2014, 215, 1855-1869.	2.2	25
20	Ring-opening metathesis polymerization of vinylnorbornene and following polymer modifications. Journal of Polymer Research, 2014, 21, 1.	2.4	9
21	Stability of MEH-PPV: Poly{[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene]vinylene} in solutions exposed to air in the dark and at daylight at laboratory temperature. Polymer Degradation and Stability, 2014, 110, 129-136.	5.8	17
22	Chain-Growth Insertion Polymerization of 1,3-Diethynylbenzene High Internal Phase Emulsions into Reactive π-Conjugated Foams. Macromolecules, 2014, 47, 4864-4869.	4.8	39
23	Degradation and cis-to-trans isomerization of poly[(2,4-difluorophenyl)acetylene]s of various initial molecular weight: SEC, NMR, DLS and EPR study. Polymer Degradation and Stability, 2013, 98, 1814-1826.	5.8	8
24	[Rh(cycloolefin)(acac)] complexes as catalysts of polymerization of aryl- and alkylacetylenes: Influence of cycloolefin ligand and reaction conditions. Journal of Molecular Catalysis A, 2013, 378, 57-66.	4.8	28
25	New Hyperâ€Crosslinked Partly Conjugated Networks with Tunable Composition by Spontaneous Polymerization of Ethynylpyridines with Bis(bromomethyl)arenes: Synthesis, Spectral Properties, and Activity in CO ₂ Capture. Macromolecular Chemistry and Physics, 2013, 214, 2856-2866.	2.2	9
26	Polycyclotrimers of 1,4â€Diethynylbenzene, 2,6â€Diethynylnaphthalene, and 2,6â€Diethynylanthracene: Preparation and Gas Adsorption Properties. Macromolecular Chemistry and Physics, 2013, 214, 2016-2026.	2.2	21
27	Poly(disubstituted acetylene)s With Pendant Naphthalimideâ€Based Fluorophore Groups. Macromolecular Chemistry and Physics, 2012, 213, 411-424.	2.2	10
28	Polyacetyleneâ€Type Networks Prepared by Coordination Polymerization of Diethynylarenes: New Type of Microporous Organic Polymers. Macromolecular Rapid Communications, 2012, 33, 158-163.	3.9	33
29	Molecular weight and configurational stability of poly(phenylacetylene) prepared with Rh catalyst. Polymer Degradation and Stability, 2011, 96, 1310-1320.	5.8	13
30	Synthesis and Spectral Properties of Novel Poly(disubstituted acetylene)s. Macromolecular Chemistry and Physics, 2011, 212, 1802-1814.	2.2	19
31	SEC/DAD and ¹ H NMR Study of Molecular Weight and Configurational Stability of Poly(2,4-difluorophenylacetylene) and Polyphenylacetylene Prepared with Rh Catalyst. Macromolecular Chemistry and Physics, 2011, 212, 1987-1998.	2.2	8
32	SBA-15 Immobilized Ruthenium Carbenes as Catalysts for Ring Closing Metathesis and Ring Opening Metathesis Polymerization. Topics in Catalysis, 2010, 53, 200-209.	2.8	27
33	RuCl2(p-cymene)(PCy3) immobilized on mesoporous molecular sieves as catalyst for ROMP of norbornene and its derivatives. Journal of Molecular Catalysis A, 2010, 332, 19-24.	4.8	22
34	Hydrogenation of phenylacetylene and 3-phenylpropyne using Rh(diene) complexes under homogeneous and heterogeneous conditions. Applied Catalysis A: General, 2010, 372, 34-39.	4.3	11
35	Molecular weight and configurational stability of poly[(fluorophenyl)acetylene]s prepared with metathesis and insertion catalysts. Journal of Polymer Science Part A, 2010, 48, 4296-4309.	2.3	27
36	[RuCl2(p-Cymene)]2 Immobilized on Mesoporous Molecular Sieves SBA-15 as Catalyst for ROMP of Norbornene. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 391-400.	0.5	0

#	Article	IF	CITATIONS
37	New fluoreneâ€based copolymers containing oxadiazole pendant groups: Synthesis, characterization, and polymer stability. Journal of Polymer Science Part A, 2009, 47, 4532-4546.	2.3	16

Morphology and optical responses of SERS active \ddot{i} -conjugated poly(N-ethyl-2-ethynylpyridinium) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50 2.8

39	Polymerization of aliphatic alkynes with heterogeneous Mo catalysts supported on mesoporous molecular sieves. Journal of Polymer Science Part A, 2008, 46, 2593-2599.	2.3	16
40	Polymerization of 3â€ethynylthiophene with homogeneous and heterogeneous Rh catalysts. Journal of Polymer Science Part A, 2008, 46, 2776-2787.	2.3	25
41	Synthesis and ROMP activity of aminophenol-substituted tungsten(VI) and molybdenum(VI) complexes. Journal of Organometallic Chemistry, 2008, 693, 1171-1176.	1.8	19
42	Bis(μ-carboxylato)dienerhodium(I) Complexes - Synthesis, Characterization and Catalytic Activity. Collection of Czechoslovak Chemical Communications, 2008, 73, 1205-1221.	1.0	6
43	Characterization of substituted polyacetylene microstructure by pyrolysis gas chromatography. Journal of Separation Science, 2007, 30, 731-739.	2.5	10
44	Structure Dynamics and Isomerism of Bis[μ-(2-methylphenolato)]bis[(η2:η2-cycloocta-1,5-diene)rhodium(I)] Complex. Collection of Czechoslovak Chemical Communications, 2006, 71, 423-433.	1.0	3
45	MCM-41 anchored Schrock catalyst Mo(CHCMe2Ph)(N-2,6-i-Pr2C6H3)[OCMe(CF3)2]2-activity in 1-heptene metathesis and cross-metathesis reactions. Journal of Molecular Catalysis A, 2005, 232, 53-58.	4.8	42
46	Unperturbed Dimensions of Atactic Poly(phenylacetylene). Collection of Czechoslovak Chemical Communications, 2005, 70, 1787-1798.	1.0	8
47	[Rh(cod)Cl]2 complex immobilized on mesoporous molecular sieves MCM-41-a new hybrid catalyst for polymerization of phenylacetylene. Journal of Molecular Catalysis A, 2003, 203, 287-298.	4.8	35
48	Controlled and Living Polymerizations Induced with Rhodium Catalysts. A Review. Collection of Czechoslovak Chemical Communications, 2003, 68, 1745-1790.	1.0	96
49	Hybrid Catalysts for Acetylenes Polymerization Prepared by Anchoring [Rh(cod)Cij2 on MCM-41, MCM-48 and SBA-15 Mesoporous Molecular Sieves - The Effect of Support Structure on Catalytic Activity in Polymerization of Phenylacetylene and 4-Ethynyl-N-{4-[(trimethylsilyl)ethynyl]benzylidene}aniline. Collection of Czechoslovak Chemical	1.0	15
50	Communications, 2003, 68, 1861-1876. Polybenzimidazole-Supported [Rh(cod)Cl]2 Complex: Effective Catalyst for the Polymerization of Substituted Acetylenes. Chemistry - A European Journal, 2002, 8, 366-371.	3.3	31
51	MCM-41-Immobilized [Rh(cod)OCH3]2 Complex - A Hybrid Catalyst for the Polymerization of Phenylacetylene and Its Ring-Substituted Derivatives. Macromolecular Rapid Communications, 2002, 23, 32-37.	3.9	24
52	Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate Induced by RhI(cycloocta-1,5-diene) Complexes. Collection of Czechoslovak Chemical Communications, 2002, 67, 1858-1871.	1.0	19
53	Polymerization of isomeric N -(4-substituted benzylidene)-4-ethynylanilines and 4-substituted N -(4-ethynylbenzylidene)anilines by transition metal catalysts: preparation and characterization of new substituted polyacetylenes with aromatic Schiff base type pendant groups. Polymer, 2001, 42, 6709-6721.	3.8	29
54	Degradation of Substituted Polyacetylenes and Effect of This Process on SEC Analysis of These Polymers. ACS Symposium Series, 1999, , 263-287.	0.5	6

#	Article	IF	CITATIONS
55	Polymerization of 4-(ferrocenylethynyl)phenylacetylene with transition metal catalysts. Macromolecular Chemistry and Physics, 1999, 200, 972-976.	2.2	20
56	New polyacetylenes with aromatic Schiff's base pendant groups by polymerization of benzylidene-ring-substitutedN-benzylidene-4-ethynylanilines with Rh-based catalysts. Macromolecular Chemistry and Physics, 1999, 200, 2591-2596.	2.2	26
57	STUDY OF POLYSTYRENE-BLOCK-POLY(METHYLMETHACRYLATE) MICELLES BY SEC/MALS. DETERMINATION OF MOLECULAR WEIGHTS AND SIZE DISTRIBUTION. Journal of Liquid Chromatography and Related Technologies, 1999, 22, 2109-2124.	1.0	2
58	New Route to Conjugated Polymer Networks:Â Synthesis of Poly(4-ethynyl)phenylacetylene and Its Transformation into a Conjugated Network. Macromolecules, 1999, 32, 4477-4481.	4.8	35
59	New Substituted Polyacetylenes with Phenyleneethynylene Side Groups [â~'(C6H4â~'Câ‹®C)nâ~'SiiPr3;n= 1, 2]:Â Synthesis, Characterization, Spectroscopic, and Photoelectric Properties. Macromolecules, 1999, 32, 6439-6449.	4.8	37
60	Polymerization ofp-nitrophenylacetylene with metathesis catalysts. Photoelectrical properties of phenylacetylene/p-nitrophenylacetylene copolymer. Macromolecular Chemistry and Physics, 1998, 199, 155-161.	2.2	2
61	Polymerization of nitrophenyl propargyl ethers with transition metal catalysts and characterization of polymers. Polymer, 1998, 39, 4443-4447.	3.8	15
62	Polymerization of Nitrophenyl and 3-Diethylaminophenyl Prop-2-yn-1-yl Ethers with PdCl2. Polymers and Copolymers Characterization. Collection of Czechoslovak Chemical Communications, 1998, 63, 1803-1814.	1.0	10
63	Study Of Polystyrene-block-poly(methyl methacrylate) Micelles by Size Exclusion Chromatography/Low Angle Laser Light Scattering Anomalous Micellization. Journal of Liquid Chromatography and Related Technologies, 1998, 21, 2459-2472.	1.0	6
64	Polymerization of p-nitrophenylacetylene with metathesis catalysts. Photoelectrical properties of phenylacetylene/p-nitrophenylacetylene copolymer. Macromolecular Chemistry and Physics, 1998, 199, 155-161.	2.2	15
65	Comparative Study of Polymerization of 2-, 3- and 4-lodophenylacetylenes with Rh-, Mo- and W-Based Catalysts. Collection of Czechoslovak Chemical Communications, 1998, 63, 1815-1838.	1.0	19
66	Synthesis of Triferrocenylbenzenes by Tantalum(V)-Catalyzed Cyclotrimerization of Ethynylferrocene. The Crystal Structure of 1,3,5-Triferrocenylbenzene. Collection of Czechoslovak Chemical Communications, 1997, 62, 1577-1584.	1.0	34
67	Poly(p-iodophenylacetylene): synthesis, characterization, polymer stability and photoelectrical properties. Polymer, 1997, 38, 3359-3367.	3.8	29
68	Cobaltacarboranylacetylene 8,8'-(μ-CHC-CH2S)-(1,2-C2B9H10)2-3-Co(III): Synthesis, Characterization and Polymerization of New Substituted Acetylene. Collection of Czechoslovak Chemical Communications, 1996, 61, 877-887.	1.0	11
69	Size Exclusion Chromatography of Substituted Acetylene Polymers: Effect of Autooxidative Degradation of the Polymer During the Analysis. Collection of Czechoslovak Chemical Communications, 1996, 61, 120-125.	1.0	22
70	Polymerization of phenylacetylene with WOCl4/tetraphenyltin catalyst in benzene/1,4-dioxane. Synthesis of high-molecular-weight poly(phenylacetylene). Macromolecular Chemistry and Physics, 1995, 196, 1705-1712.	2.2	29
71	Study of Polystyrene-Block-Poly(Methyl Methacrylate) Micelles by Size Exclusion Chromatography/Low Angle Laser Light Scattering. Influence of Copolymer Composition and Molecular Weight. Journal of Liquid Chromatography and Related Technologies, 1995, 18, 2291-2307.	1.0	10
72	Metathesis Polymerization of Phenylacetylene by Tungsten Aryloxo Complexes. Collection of Czechoslovak Chemical Communications, 1995, 60, 489-497.	1.0	4

#	Article	IF	CITATIONS
73	Study of polystyrene-block-poly(methyl methacrylate) micelles by size exclusion chromatography/low-angle laser light scattering, 1. Influence of copolymer concentration and flow rate. Macromolecular Chemistry and Physics, 1994, 195, 781-791.	2.2	13
74	Metathesis polymerization of monosubstituted acetylenes by tungsten aryloxo complexes as unicomponent catalysts. Macromolecular Rapid Communications, 1994, 15, 771-776.	3.9	9
75	Metathesis Catalyst WOCl4/Ph4Sn: The Chemistry of Ripening and Transformation to Polymerization Active Species. Collection of Czechoslovak Chemical Communications, 1994, 59, 2454-2471.	1.0	8
76	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 51-53.	1.1	36
77	Autoxidative Degradation of Poly(phenylacetylene). Collection of Czechoslovak Chemical Communications, 1993, 58, 2651-2662.	1.0	34
78	Kinetics and mechanism of the phenylacetylene metathesis polymerization catalyzed with WOCl4/Ph4Sn in benzene. Collection of Czechoslovak Chemical Communications, 1991, 56, 351-367.	1.0	13
79	Charge carrier photogeneration on some substituted polyacetylenes. Colloid and Polymer Science, 1990, 268, 1024-1027.	2.1	17