## Jakob Andert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5627953/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Longitudinal Vehicle Motion Prediction in Urban Settings With Traffic Light Interaction. IEEE<br>Transactions on Intelligent Vehicles, 2023, 8, 204-215.                                                                                | 9.4 | 6         |
| 2  | Support vector machine based emissions modeling using particle swarm optimization for<br>homogeneous charge compression ignition engine. International Journal of Engine Research, 2023, 24,<br>536-551.                                | 1.4 | 13        |
| 3  | Dynamic measurement with in-cycle process excitation of HCCI combustion: The key to handle complexity of data-driven control?. International Journal of Engine Research, 2023, 24, 1155-1174.                                           | 1.4 | 1         |
| 4  | An FPGA-Based Real-Time Spatial Harmonics Model of a PMSM Considering Iron Losses and the Thermal Impact. IEEE Transactions on Transportation Electrification, 2022, 8, 1289-1301.                                                      | 5.3 | 9         |
| 5  | Efficiency Increase through Model Predictive Thermal Control of Electric Vehicle Powertrains.<br>Energies, 2022, 15, 1476.                                                                                                              | 1.6 | 7         |
| 6  | A numerical study of the polarization effect of liquid water in the gas diffusion layer of a proton exchange membrane fuel cell. Journal of Power Sources, 2022, 529, 231221.                                                           | 4.0 | 4         |
| 7  | Real-Time Emission Prediction with Detailed Chemistry under Transient Conditions for<br>Hardware-in-the-Loop Simulations. Energies, 2022, 15, 261.                                                                                      | 1.6 | 8         |
| 8  | A Virtual Prototyping Approach for Development of PMSM on Real-Time Platforms: A Case Study on Temperature Sensitivity. Automotive Innovation, 2022, 5, 285-298.                                                                        | 3.1 | 2         |
| 9  | lon current–based homogeneous charge compression ignition combustion control using direct<br>water injection. International Journal of Engine Research, 2021, 22, 1825-1837.                                                            | 1.4 | 6         |
| 10 | Closed-loop platoon simulation with cooperative intelligent transportation systems based on vehicle-to-X communication. Simulation Modelling Practice and Theory, 2021, 106, 102173.                                                    | 2.2 | 12        |
| 11 | Cycle resolved control for HCCI engine load range expansion by combining ion current and pressure sensor. Proceedings of the Combustion Institute, 2021, 38, 5685-5694.                                                                 | 2.4 | 7         |
| 12 | Detection of transient low-temperature combustion characteristics by ion current – The missing link<br>for homogeneous charge compression ignition control?. Applied Energy, 2021, 283, 116299.                                         | 5.1 | 10        |
| 13 | Electric torque assist and supercharging of a downsized gasoline engine in a 48V mild hybrid<br>powertrain. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile<br>Engineering, 2021, 235, 1245-1255. | 1.1 | 6         |
| 14 | Toward Smart Vehicle-to-Everything-Connected Powertrains: Driving Real Component Test Benches in<br>a Fully Interactive Virtual Smart City. IEEE Vehicular Technology Magazine, 2021, 16, 75-82.                                        | 2.8 | 12        |
| 15 | Virtual test drives with multiple vehicles under test for the evaluation of collaborative assisted and automated driving functions. Proceedings, 2021, , 11-20.                                                                         | 0.2 | 1         |
| 16 | Embedded Real-Time Nonlinear Model Predictive Control for the Thermal Torque Derating of an Electric Vehicle. IFAC-PapersOnLine, 2021, 54, 359-364.                                                                                     | 0.5 | 5         |
| 17 | Automated eco-driving in urban scenarios using deep reinforcement learning. Transportation Research Part C: Emerging Technologies, 2021, 126, 102967.                                                                                   | 3.9 | 54        |
| 18 | Featureâ€driven systems engineering procedure for standardized productâ€line development. Systems<br>Engineering, 2021, 24, 456-479.                                                                                                    | 1.6 | 4         |

Jakob Andert

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nonlinear Model Predictive Control of Mild Hybrid Powertrains With Electric Supercharging. IEEE<br>Transactions on Vehicular Technology, 2021, 70, 8490-8504.                                                                                        | 3.9 | 2         |
| 20 | Accurate physics-based modeling of electric vehicle energy consumption in the SUMO traffic microsimulator. , 2021, , .                                                                                                                               |     | 9         |
| 21 | Simulator Coupled with Distributed Co-Simulation Protocol for Automated Driving Tests. Automotive Innovation, 2021, 4, 373-389.                                                                                                                      | 3.1 | 6         |
| 22 | Analysis of ion current signal during negative valve overlap of HCCI combustion with high compression ratio. International Journal of Engine Research, 2021, 22, 3300-3312.                                                                          | 1.4 | 1         |
| 23 | Energy-efficient powertrain control of an automated and connected power-split HEV in an urban environment. IFAC-PapersOnLine, 2021, 54, 350-355.                                                                                                     | 0.5 | 1         |
| 24 | A Study on Scaling Laws for Thermal Parameters of Permanent Magnet Synchronous Machines. , 2021, ,                                                                                                                                                   |     | 0         |
| 25 | Development and experimental validation of a real-time capable field programmable gate array–based<br>gas exchange model for negative valve overlap. International Journal of Engine Research, 2020, 21,<br>421-436.                                 | 1.4 | 24        |
| 26 | Energy saving potentials of modern powertrains utilizing predictive driving algorithms in different<br>traffic scenarios. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of<br>Automobile Engineering, 2020, 234, 992-1005. | 1.1 | 12        |
| 27 | A Driveability Study on Automated Longitudinal Vehicle Control. IEEE Transactions on Intelligent<br>Transportation Systems, 2020, 21, 3273-3280.                                                                                                     | 4.7 | 14        |
| 28 | Effects of water addition on the combustion of iso-octane investigated in laminar flames,<br>low-temperature reactors, and an HCCI engine. Combustion and Flame, 2020, 212, 433-447.                                                                 | 2.8 | 23        |
| 29 | Development and Application of Ion Current/Cylinder Pressure Cooperative Combustion Diagnosis and Control System. Energies, 2020, 13, 5656.                                                                                                          | 1.6 | 4         |
| 30 | Homogeneous charge compression ignition combustion stability improvement using a rapid ignition system. International Journal of Engine Research, 2020, 21, 1846-1856.                                                                               | 1.4 | 14        |
| 31 | Virtual shaft: Robust coupling by bidirectional and distributed prediction of coupling values.<br>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,<br>2020, 234, 2419-2428.                        | 1.1 | 5         |
| 32 | EleMA: A reference simulation model architecture and interface standard for modeling and testing of electric vehicles. ETransportation, 2020, 4, 100060.                                                                                             | 6.8 | 8         |
| 33 | An Analysis of the Tradeoff Between Fuel Consumption and Ride Comfort for the Pulse and Glide<br>Driving Strategy. IEEE Transactions on Vehicular Technology, 2020, 69, 7223-7233.                                                                   | 3.9 | 15        |
| 34 | Dynamic measurement of HCCI combustion with self-learning of experimental space limitations.<br>Applied Energy, 2020, 262, 114364.                                                                                                                   | 5.1 | 11        |
| 35 | Co-Simulation of Multi-Domain Engine and its Integrated Control for Transient Driving Cycles.<br>IFAC-PapersOnLine, 2020, 53, 13982-13987.                                                                                                           | 0.5 | 8         |
| 36 | Reduction of Transient Engine-Out NOx-Emissions by Advanced Digital Combustion Rate Shaping.<br>Automotive Innovation, 2020, 3, 181-190.                                                                                                             | 3.1 | 10        |

Jakob Andert

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Engine-in-the-Loop – Auswirkung der Echtzeitperformance auf die Abbildungsgüte von Fahrzyklen.<br>Proceedings, 2020, , 153-171.                                                                                                                                          | 0.2 | 2         |
| 38 | Correction to "Function Development With an Electric-Machine-in-the-Loop Setup: A Case Study―[Dec 19 1419-1429]. IEEE Transactions on Transportation Electrification, 2020, 6, 356-356.                                                                                  | 5.3 | 0         |
| 39 | Road-to-rig-to-desktop: Virtual development using real-time engine modelling and powertrain<br>co-simulation. International Journal of Engine Research, 2019, 20, 686-695.                                                                                               | 1.4 | 28        |
| 40 | A simulation-based case study for powertrain efficiency improvement by automated driving functions.<br>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,<br>2019, 233, 1320-1330.                                       | 1.1 | 17        |
| 41 | Symposium for combustion control 2017 and 2018 special issue. International Journal of Engine Research, 2019, 20, 1003-1004.                                                                                                                                             | 1.4 | 1         |
| 42 | In-cycle control for stabilization of homogeneous charge compression ignition combustion using direct water injection. Applied Energy, 2019, 240, 1061-1074.                                                                                                             | 5.1 | 34        |
| 43 | Smart rule-based diesel engine control strategies by means of predictive driving information.<br>International Journal of Engine Research, 2019, 20, 1047-1058.                                                                                                          | 1.4 | 12        |
| 44 | Development and experimental validation of a field programmable gate array–based in-cycle direct<br>water injection control strategy for homogeneous charge compression ignition combustion stability.<br>International Journal of Engine Research, 2019, 20, 1101-1113. | 1.4 | 16        |
| 45 | Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, 2019, 183, 753-763.                                                                                                      | 4.4 | 26        |
| 46 | Nonlinear model predictive control of a discrete-cycle gasoline-controlled auto ignition engine model: Simulative analysis. International Journal of Engine Research, 2019, 20, 1025-1036.                                                                               | 1.4 | 18        |
| 47 | Function Development With an Electric-Machine-in-the-Loop Setup: A Case Study. IEEE Transactions on Transportation Electrification, 2019, 5, 1419-1429.                                                                                                                  | 5.3 | 16        |
| 48 | Reduced Order Modeling for Multi-scale Control of Low Temperature Combustion Engines. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2019, , 167-181.                                                                                                  | 0.2 | 6         |
| 49 | Influence of sensor and communication setup on electric cam phaser control quality. Proceedings of<br>the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 687-696.                                                            | 1.1 | 1         |
| 50 | Verkehrssimulation im Hardware-in-the-Loop-SteuergerÄ <b>t</b> etest. Proceedings, 2019, , 253-269.                                                                                                                                                                      | 0.2 | 0         |
| 51 | Symposium for Combustion Control 2016. International Journal of Engine Research, 2018, 19, 151-152.                                                                                                                                                                      | 1.4 | 1         |
| 52 | Decoupling of consecutive gasoline controlled auto-ignition combustion cycles by field<br>programmable gate array based real-time cylinder pressure analysis. International Journal of Engine<br>Research, 2018, 19, 153-167.                                            | 1.4 | 20        |
| 53 | Model-based control of gasoline-controlled auto-ignition. International Journal of Engine Research, 2018, 19, 189-201.                                                                                                                                                   | 1.4 | 22        |
| 54 | Autoregressive modeling of cycle-to-cycle correlations in homogeneous charge compression ignition combustion. International Journal of Engine Research, 2018, 19, 790-802.                                                                                               | 1.4 | 15        |

JAKOB ANDERT

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Electric-Motor-in-the-Loop: Efficient Testing and Calibration of Hybrid Power Trains.<br>IFAC-PapersOnLine, 2018, 51, 240-245.                                           | 0.5 | 7         |
| 56 | Range Extender Module Transmission Topology Study. International Journal of Automotive<br>Technology, 2018, 19, 869-878.                                                 | 0.7 | 1         |
| 57 | Potential of Real-Time Cylinder Pressure Analysis by Using Field Programmable Gate Arrays.<br>International Journal of Automotive Technology, 2018, 19, 643-650.         | 0.7 | 3         |
| 58 | X-in-the-Loop-basierte Kalibrierung: HiL Simulation eines virtuellen Dieselantriebsstrangs.<br>Proceedings, 2018, , 53-79.                                               | 0.2 | 4         |
| 59 | Durchgägig von der Straße auf den Prüfstand bis zur Simulation – eine qualitative Analyse am<br>Beispiel RDE. Proceedings, 2018, , 125-144.                              | 0.2 | 3         |
| 60 | The Distributed Co-Simulation Protocol for the Integration of Real-Time Systems and Simulation Environments. , 2018, , .                                                 |     | 5         |
| 61 | NVH Optimization of Range Extender Engines by Electric Torque Profile Shaping. IEEE Transactions on<br>Control Systems Technology, 2017, 25, 1465-1472.                  | 3.2 | 11        |
| 62 | Vehicle speed trajectory optimization under limits in time and spatial domains. Proceedings, 2017, ,<br>319-331.                                                         | 0.2 | 4         |
| 63 | An Overview of VCR Technology and Its Effects on a Turbocharged DI Engine Fueled with Ethanol and<br>Gasoline. , 2017, , .                                               |     | 7         |
| 64 | Virtual shaft: Synchronized motion control for real time testing of automotive powertrains.<br>Control Engineering Practice, 2016, 56, 101-110.                          | 3.2 | 32        |
| 65 | In-cycle Control Offers High Potential for New Combustion Concepts. MTZ Worldwide, 2015, 76, 36-41.                                                                      | 0.1 | 1         |
| 66 | KSPG Range Extendera New Pathfinder to Electromobility. AutoTechnology, 2012, 12, 26-33.                                                                                 | 0.1 | 6         |
| 67 | Rapid Control Prototyping for Cylinder Pressure Indication. MTZ Worldwide, 2012, 73, 38-42.                                                                              | 0.1 | 10        |
| 68 | KSPG Range Extender. MTZ Worldwide, 2012, 73, 12-18.                                                                                                                     | 0.1 | 11        |
| 69 | A Study on In-Cycle Combustion Control for Gasoline Controlled Autoignition. , 0, , .                                                                                    |     | 14        |
| 70 | Engine in the Loop: Closed Loop Test Bench Control with Real-Time Simulation. SAE International<br>Journal of Commercial Vehicles, 0, 10, 95-105.                        | 0.4 | 49        |
| 71 | Next-Generation Low-Voltage Power Nets Impacts of Advanced Stop/Start and Sailing Functionalities.<br>SAE International Journal of Fuels and Lubricants, 0, 10, 556-573. | 0.2 | 10        |
| 72 | Virtual Transmission Evaluation Using anÂEngine-in-the-Loop Test Facility. , 0, , .                                                                                      |     | 15        |

JAKOB ANDERT

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Virtual 48 V Mild Hybridization: Efficient Validation by Engine-in-the-Loop. SAE International Journal of<br>Alternative Powertrains, 0, 7, .                                                                                            | 0.8 | 14        |
| 74 | Crank-Angle Resolved Real-Time Engine Modelling: A Seamless Transfer from Concept Design to HiL<br>Testing. SAE International Journal of Engines, 0, 11, .                                                                               | 0.4 | 19        |
| 75 | Hardware-in-the-Loop-Based Virtual Calibration Approach to Meet Real Driving Emissions<br>Requirements. , 0, , .                                                                                                                         |     | 36        |
| 76 | Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability. , 0, , .                                                                                                                       |     | 10        |
| 77 | Real-Time Modeling of a 48V PO Mild Hybrid Vehicle with Electric Compressor for Model Predictive Control. , 0, , .                                                                                                                       |     | 12        |
| 78 | Efficient Power Electronic Inverter Control Developed in an Automotive Hardware-in-the-Loop Setup. , 0, , .                                                                                                                              |     | 6         |
| 79 | Experimental Proof-of-Concept of HiL Based Virtual Calibration for a Gasoline Engine with a Three-Way-Catalyst. , 0, , .                                                                                                                 |     | 9         |
| 80 | Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in<br>Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches. , 0, , .                                           |     | 7         |
| 81 | Experimental Investigations on the Influence of Valve Timing and Multi-Pulse Injection on GCAI Combustion. , 0, , .                                                                                                                      |     | 1         |
| 82 | Accurate Mean Value Process Models for Model-Based Engine Control Concepts by Means of Hybrid<br>Modeling. , 0, , .                                                                                                                      |     | 2         |
| 83 | Evaluation of the Potential of Direct Water Injection in HCCI Combustion. , 0, , .                                                                                                                                                       |     | 10        |
| 84 | Hardware-in-the-Loop Testing of Electric Traction Drives with an Efficiency Optimized DC-DC Converter Control. , 0, , .                                                                                                                  |     | 2         |
| 85 | Parallel Sequential Boosting for a Future High-Performance Diesel Engine. , 0, , .                                                                                                                                                       |     | 1         |
| 86 | Engine-in-the-Loop in practical application: A sensitivity study toward the influence of test bench parameters. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0, , 095440702210859. | 1.1 | 0         |