
Maria Grazia Giansanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5627739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microtubule and Actin Cytoskeletal Dynamics in Male Meiotic Cells of Drosophila melanogaster. Cells, 2022, 11, 695.	4.1	8
2	Editorial: Mechanisms of Cytokinesis in Eukaryotes. Frontiers in Cell and Developmental Biology, 2021, 9, 668705.	3.7	0
3	Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells, 2021, 10, 2336.	4.1	7
4	A novel coordinated function of Myosin II with GOLPH3 controls centralspindlin localization during cytokinesis. Journal of Cell Science, 2020, 133, .	2.0	7
5	The Close Relationship between the Golgi Trafficking Machinery and Protein Glycosylation. Cells, 2020, 9, 2652.	4.1	21
6	Oncogenic Roles of GOLPH3 in the Physiopathology of Cancer. International Journal of Molecular Sciences, 2020, 21, 933.	4.1	48
7	Drosophila doublefault protein coordinates multiple events during male meiosis by controlling mRNA translation. Development (Cambridge), 2019, 146, .	2.5	4
8	Editorial: Model Organisms: A Precious Resource for the Understanding of Molecular Mechanisms Underlying Human Physiology and Disease. Frontiers in Genetics, 2019, 10, 822.	2.3	2
9	Modeling Congenital Disorders of N-Linked Glycoprotein Glycosylation in Drosophila melanogaster. Frontiers in Genetics, 2018, 9, 436.	2.3	14
10	Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during cytokinesis in <i>Drosophila melanogaster</i> . Open Biology, 2017, 7, 160257.	3.6	35
11	COG7 deficiency in <i>Drosophila</i> generates multifaceted developmental, behavioral, and protein glycosylation phenotypes. Journal of Cell Science, 2017, 130, 3637-3649.	2.0	21
12	Visualization of cleavage furrow proteins in fixed dividing spermatocytes. Methods in Cell Biology, 2017, 137, 85-103.	1.1	6
13	Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila. PLoS Genetics, 2015, 11, e1005632.	3.5	36
14	The roles of the oncoprotein GOLPH3 in contractile ring assembly and membrane trafficking during cytokinesis. Biochemical Society Transactions, 2015, 43, 117-121.	3.4	7
15	Cytokinesis in Animal Cells. Cold Spring Harbor Perspectives in Biology, 2015, 7, a015834.	5.5	168
16	The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget, 2015, 6, 3493-3506.	1.8	47
17	GOLPH3 Is Essential for Contractile Ring Formation and Rab11 Localization to the Cleavage Site during Cytokinesis in Drosophila melanogaster. PLoS Genetics, 2014, 10, e1004305.	3.5	49
18	Mutations in <i>Cog7</i> affect Golgi structure, meiotic cytokinesis and sperm development during <i>Drosophila</i> spermatogenesis. Journal of Cell Science, 2012, 125, 5441-52.	2.0	33

#	Article	IF	CITATIONS
19	Cytokinesis in Drosophila male meiosis. Spermatogenesis, 2012, 2, 185-196.	0.8	19
20	Chromatin Staining ofDrosophilaTestes. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067363.	0.3	4
21	F-Actin Staining of Drosophila Testes. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067348-pdb.prot067348.	0.3	4
22	Paraformaldehyde Fixation of Drosophila Testes. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067330-pdb.prot067330.	0.3	9
23	Formaldehyde Fixation ofDrosophilaTestes. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067355.	0.3	8
24	The <i>Drosophila</i> RZZ complex: roles in membrane traffic and cytokinesis. Journal of Cell Science, 2012, 125, 4014-25.	2.0	26
25	What <i>Drosophila</i> spermatocytes tell us about the mechanisms underlying cytokinesis. Cytoskeleton, 2012, 69, 869-881.	2.0	26
26	The relative roles of centrosomal and kinetochore-driven microtubules in Drosophila spindle formation. Experimental Cell Research, 2012, 318, 1375-1380.	2.6	13
27	Preparation of Meiotic Chromosomes from Larval and Pupal <i>Drosophila</i> Testes. Cold Spring Harbor Protocols, 2011, 2011, prot5579.	0.3	2
28	Preparation of Live Testis Squashes in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2011, 2011, prot5577.	0.3	3
29	Immunostaining of <i>Drosophila</i> Testes. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065771.	0.3	6
30	Methanol-Acetone Fixation of Drosophila Testes. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065763-pdb.prot065763.	0.3	12
31	Role of Survivin in cytokinesis revealed by a separation-of-function allele. Molecular Biology of the Cell, 2011, 22, 3779-3790.	2.1	27
32	Preparation of Meiotic Chromosomes from Adult <i>Drosophila</i> Testes. Cold Spring Harbor Protocols, 2011, 2011, prot5578.	0.3	1
33	TRAPPII is required for cleavage furrow ingression and localization of Rab11 in dividing male meiotic cells of <i>Drosophila</i> . Journal of Cell Science, 2009, 122, 4526-4534.	2.0	66
34	Drosophila SPD-2 Is an Essential Centriole Component Required for PCM Recruitment and Astral-Microtubule Nucleation. Current Biology, 2008, 18, 303-309.	3.9	124
35	A Role for Very-Long-Chain Fatty Acids in Furrow Ingression during CytokinesisÂin Drosophila Spermatocytes. Current Biology, 2008, 18, 1426-1431.	3.9	82
36	Identification of Drosophila Mitotic Genes by Combining Co-Expression Analysis and RNA Interference. PLoS Genetics, 2008, 4, e1000126.	3.5	75

#	Article	IF	CITATIONS
37	Australin: a chromosomal passenger protein required specifically for <i>Drosophila melanogaster</i> male meiosis. Journal of Cell Biology, 2008, 180, 521-535.	5.2	25
38	Rab11 Is Required for Membrane Trafficking and Actomyosin Ring Constriction in Meiotic Cytokinesis of <i>Drosophila</i> Males. Molecular Biology of the Cell, 2007, 18, 5034-5047.	2.1	93
39	The Drosophila Lkb1 kinase is required for spindle formation and asymmetric neuroblast division. Development (Cambridge), 2007, 134, 2183-2193.	2.5	43
40	The Class I PITP Giotto Is Required for Drosophila Cytokinesis. Current Biology, 2006, 16, 195-201.	3.9	97
41	Genetic Dissection of Meiotic Cytokinesis in Drosophila Males. Molecular Biology of the Cell, 2004, 15, 2509-2522.	2.1	90
42	Spindle assembly and cytokinesis in the absence of chromosomes during Drosophila male meiosis. Journal of Cell Biology, 2003, 160, 993-999.	5.2	64
43	TheDrosophila Cog5Homologue Is Required for Cytokinesis, Cell Elongation, and Assembly of Specialized Golgi Architecture during Spermatogenesis. Molecular Biology of the Cell, 2003, 14, 190-200.	2.1	107
44	Advances in Cytokinesis Research. Drosophila Male Meiosis as a Model System for the Study of Cytokinesis in Animal Cells Cell Structure and Function, 2001, 26, 609-617.	1.1	44
45	Relationships between the central spindle and the contractile ring during cytokinesis in animal cells. , 2000, 49, 202-208.		49
46	Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nature Cell Biology, 2000, 2, 54-56.	10.3	103
47	Spindle Self-organization and Cytokinesis During Male Meiosis in asterless Mutants of Drosophila melanogaster. Journal of Cell Biology, 1998, 142, 751-761.	5.2	164
48	Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes and Development, 1998, 12, 396-410.	5.9	164