Gerald E Loeb ## List of Publications by Citations Source: https://exaly.com/author-pdf/5627693/gerald-e-loeb-publications-by-citations.pdf Version: 2024-04-28 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 146 5,431 43 70 papers citations h-index g-index 161 6,218 3.9 5.94 ext. papers ext. citations avg, IF L-index | # | Paper | IF | Citations | |-----|--|--------|-----------| | 146 | Biomimetic Tactile Sensor Array. <i>Advanced Robotics</i> , 2008 , 22, 829-849 | 1.7 | 244 | | 145 | The Control and Responses of Mammalian Muscle Spindles During Normally Executed Motor Tasks. <i>Exercise and Sport Sciences Reviews</i> , 1984 , 12, 157???204 | 6.7 | 221 | | 144 | Bayesian exploration for intelligent identification of textures. <i>Frontiers in Neurorobotics</i> , 2012 , 6, 4 | 3.4 | 206 | | 143 | Parylene as a chronically stable, reproducible microelectrode insulator. <i>IEEE Transactions on Biomedical Engineering</i> , 1977 , 24, 121-8 | 5 | 195 | | 142 | BION system for distributed neural prosthetic interfaces. <i>Medical Engineering and Physics</i> , 2001 , 23, 9-15 | 82.4 | 184 | | 141 | Muscle coordination is habitual rather than optimal. <i>Journal of Neuroscience</i> , 2012 , 32, 7384-91 | 6.6 | 158 | | 140 | Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control. <i>Journal of Neuroscience Methods</i> , 2000 , 101, 117-30 | 3 | 140 | | 139 | Architecture and consequent physiological properties of the semitendinosus muscle in domestic goats. <i>Journal of Morphology</i> , 1989 , 199, 287-97 | 1.6 | 138 | | 138 | Optimal isnR good enough. <i>Biological Cybernetics</i> , 2012 , 106, 757-65 | 2.8 | 134 | | 137 | Hard lessons in motor control from the mammalian spinal cord. <i>Trends in Neurosciences</i> , 1987 , 10, 108-1 | 1133.3 | 130 | | 136 | Real-time sonography to estimate muscle thickness: comparison with MRI and CT. <i>Journal of Clinical Ultrasound</i> , 2001 , 29, 230-6 | 1 | 126 | | 135 | Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. <i>Journal of Neurophysiology</i> , 2006 , 96, 1772-88 | 3.2 | 119 | | 134 | Mechanical properties of aponeurosis and tendon of the cat soleus muscle during whole-muscle isometric contractions. <i>Journal of Morphology</i> , 1995 , 224, 73-86 | 1.6 | 118 | | 133 | What do reflex and voluntary mean? Modern views on an ancient debate. <i>Experimental Brain Research</i> , 2000 , 130, 417-32 | 2.3 | 115 | | 132 | Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force-length and force-velocity relationships. <i>Journal of Muscle Research and Cell Motility</i> , 1999 , 20, 627-43 | 3.5 | 113 | | 131 | Spatial cross-correlation. A proposed mechanism for acoustic pitch perception. <i>Biological Cybernetics</i> , 1983 , 47, 149-63 | 2.8 | 107 | | 130 | Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. <i>Journal of Muscle Research and Cell Motility</i> , 1996 , 17, 207-19 | 3.5 | 90 | ## (2007-1996) | 129 | Mechanics of feline soleus: II. Design and validation of a mathematical model. <i>Journal of Muscle Research and Cell Motility</i> , 1996 , 17, 221-33 | 3.5 | 89 | |-----|---|------|----| | 128 | Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor 2015 , | | 87 | | 127 | A Reductionist Approach to Creating and Using Neuromusculoskeletal Models 2000 , 148-163 | | 87 | | 126 | Grip Control Using Biomimetic Tactile Sensing Systems. <i>IEEE/ASME Transactions on Mechatronics</i> , 2009 , 14, 718-723 | 5.5 | 85 | | 125 | Tactile identification of objects using Bayesian exploration 2013, | | 82 | | 124 | BCI Meeting 2005workshop on signals and recording methods. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2006 , 14, 138-41 | 4.8 | 81 | | 123 | Cognitive signals for brain-machine interfaces in posterior parietal cortex include continuous 3D trajectory commands. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 17075-80 | 11.5 | 75 | | 122 | Are muscle synergies useful for neural control?. Frontiers in Computational Neuroscience, 2013, 7, 19 | 3.5 | 70 | | 121 | Use of tactile feedback to control exploratory movements to characterize object compliance. <i>Frontiers in Neurorobotics</i> , 2012 , 6, 7 | 3.4 | 69 | | 120 | Spinal-like regulator facilitates control of a two-degree-of-freedom wrist. <i>Journal of Neuroscience</i> , 2010 , 30, 9431-44 | 6.6 | 68 | | 119 | Single- and Triaxis Piezoelectric-Bimorph Accelerometers. <i>Journal of Microelectromechanical Systems</i> , 2008 , 17, 45-57 | 2.5 | 66 | | 118 | BIONic WalkAide for correcting foot drop. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2005 , 13, 242-6 | 4.8 | 64 | | 117 | The BION devices: injectable interfaces with peripheral nerves and muscles. <i>Neurosurgical Focus</i> , 2006 , 20, E2 | 4.2 | 63 | | 116 | Measured and modeled properties of mammalian skeletal muscle: IV. dynamics of activation and deactivation. <i>Journal of Muscle Research and Cell Motility</i> , 2000 , 21, 33-47 | 3.5 | 63 | | 115 | Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ.
Journal of Neurophysiology, 2006 , 96, 1789-802 | 3.2 | 62 | | 114 | Sensing tactile microvibrations with the BioTac ©comparison with human sensitivity 2012, | | 57 | | 113 | Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo. <i>Biosensors and Bioelectronics</i> , 2008 , 23, 1458-65 | 11.8 | 57 | | 112 | A virtual reality environment for designing and fitting neural prosthetic limbs. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2007 , 15, 9-15 | 4.8 | 53 | | 111 | Measured and modeled properties of mammalian skeletal muscle. I. The effects of post-activation potentiation on the time course and velocity dependencies of force production. <i>Journal of Muscle Research and Cell Motility</i> , 1999 , 20, 443-56 | 3.5 | 50 | |-----|--|------|----| | 110 | Biophysical considerations in electrical stimulation of the auditory nervous system. <i>Annals of the New York Academy of Sciences</i> , 1983 , 405, 123-36 | 6.5 | 50 | | 109 | A robust micro-vibration sensor for biomimetic fingertips 2008, | | 49 | | 108 | First Clinical Experience with BION Implants for Therapeutic Electrical Stimulation. <i>Neuromodulation</i> , 2004 , 7, 38-47 | 3.1 | 49 | | 107 | 2011, | | 46 | | 106 | Signal processing and fabrication of a biomimetic tactile sensor array with thermal, force and microvibration modalities 2009 , | | 45 | | 105 | Relationships between range of motion, lo, and passive force in five strap-like muscles of the feline hind limb. <i>Journal of Morphology</i> , 1996 , 230, 69-77 | 1.6 | 45 | | 104 | Toward Perceiving Robots as Humans: Three Handshake Models Face the Turing-Like Handshake Test. <i>IEEE Transactions on Haptics</i> , 2012 , 5, 196-207 | 2.7 | 44 | | 103 | Neural prosthetic interfaces with the nervous system. <i>Trends in Neurosciences</i> , 1989 , 12, 195-201 | 13.3 | 43 | | 102 | Feline caudofemoralis muscle. Muscle fibre properties, architecture, and motor innervation. <i>Experimental Brain Research</i> , 1998 , 121, 76-91 | 2.3 | 42 | | 101 | Post-Activation Potentiation Clue for Simplifying Models of Muscle Dynamics. <i>American Zoologist</i> , 1998 , 38, 743-754 | | 41 | | 100 | Decreased conduction velocity in the proximal projections of myelinated dorsal root ganglion cells in the cat. <i>Brain Research</i> , 1976 , 103, 381-5 | 3.7 | 40 | | 99 | Model-based development of neural prostheses for movement. <i>IEEE Transactions on Biomedical Engineering</i> , 2007 , 54, 1909-18 | 5 | 39 | | 98 | The functional reanimation of paralyzed limbs. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2005 , 24, 45-51 | | 37 | | 97 | Measured and modeled properties of mammalian skeletal muscle: III. the effects of stimulus frequency on stretch-induced force enhancement and shortening-induced force depression. <i>Journal of Muscle Research and Cell Motility</i> , 2000 , 21, 21-31 | 3.5 | 37 | | 96 | Why cats pace on the treadmill. <i>Physiology and Behavior</i> , 1993 , 53, 501-7 | 3.5 | 36 | | 95 | Ventral root projections of myelinated dorsal root ganglion cells in the cat. <i>Brain Research</i> , 1976 , 106, 159-65 | 3.7 | 36 | | 94 | Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats. <i>IEEE</i> Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11, 218-26 | 4.8 | 35 | | 93 | Mammalian muscle model for predicting force and energetics during physiological behaviors. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2012 , 20, 117-33 | 4.8 | 34 | |----|--|------|----| | 92 | Finding common groud between robotics and physiology. <i>Trends in Neurosciences</i> , 1983 , 6, 203-204 | 13.3 | 30 | | 91 | The functional replacement of the ear. <i>Scientific American</i> , 1985 , 252, 104-11 | 0.5 | 29 | | 90 | Overcomplete musculature or underspecified tasks?. <i>Motor Control</i> , 2000 , 4, 81-3; discussion 97-116 | 1.3 | 27 | | 89 | Multimodal Tactile Sensor. Springer Tracts in Advanced Robotics, 2014, 405-429 | 0.5 | 27 | | 88 | Useful properties of spinal circuits for learning and performing planar reaches. <i>Journal of Neural Engineering</i> , 2014 , 11, 056006 | 5 | 26 | | 87 | A two-joint human posture control model with realistic neural delays. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2012 , 20, 738-48 | 4.8 | 26 | | 86 | Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task. <i>IEEE Transactions on Biomedical Engineering</i> , 2013 , 60, 792-802 | 5 | 23 | | 85 | Real-time animation software for customized training to use motor prosthetic systems. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2012 , 20, 134-42 | 4.8 | 22 | | 84 | A Software Tool for Faster Development of Complex Models of Musculoskeletal Systems and Sensorimotor Controllers in SimulinkTM. <i>Journal of Applied Biomechanics</i> , 2002 , 18, 357-365 | 1.2 | 22 | | 83 | Preclinical testing and optimization of a novel fetal micropacemaker. <i>Heart Rhythm</i> , 2015 , 12, 1683-90 | 6.7 | 19 | | 82 | Are cochlear implant patients suffering from perceptual dissonance?. Ear and Hearing, 2005, 26, 435-50 | 3.4 | 19 | | 81 | Neuromorphic meets neuromechanics, part II: the role of fusimotor drive. <i>Journal of Neural Engineering</i> , 2017 , 14, 025002 | 5 | 18 | | 80 | On the use of musculoskeletal models to interpret motor control strategies from performance data. <i>Journal of Neural Engineering</i> , 2008 , 5, 232-53 | 5 | 18 | | 79 | Neural Prosthetics:A Review of Empirical vs. Systems Engineering Strategies. <i>Applied Bionics and Biomechanics</i> , 2018 , 2018, 1435030 | 1.6 | 18 | | 78 | Using the BioTac as a tumor localization tool 2014 , | | 16 | | 77 | Bayesian action&perception: representing the world in the brain. <i>Frontiers in Neuroscience</i> , 2014 , 8, 341 | 5.1 | 16 | | 76 | Prenatal diagnosis and management of congenital complete heart block. <i>Birth Defects Research</i> , 2019 , 111, 380-388 | 2.9 | 16 | | 75 | Design and testing of a percutaneously implantable fetal pacemaker. <i>Annals of Biomedical Engineering</i> , 2013 , 41, 17-27 | 4.7 | 15 | |----|---|------|----| | 74 | Prediction of Distal Arm Posture in 3-D Space From Shoulder Movements for Control of Upper Limb Prostheses. <i>Proceedings of the IEEE</i> , 2008 , 96, 1217-1225 | 14.3 | 15 | | 73 | Major remaining gaps in models of sensorimotor systems. <i>Frontiers in Computational Neuroscience</i> , 2015 , 9, 70 | 3.5 | 14 | | 72 | Deformable skin design to enhance response of a biomimetic tactile sensor 2008 , | | 14 | | 71 | Accelerated life-test methods and results for implantable electronic devices with adhesive encapsulation. <i>Biomedical Microdevices</i> , 2017 , 19, 46 | 3.7 | 13 | | 70 | Modeling the potentiality of spinal-like circuitry for stabilization of a planar arm system. <i>Progress in Brain Research</i> , 2011 , 194, 203-13 | 2.9 | 13 | | 69 | Recruitment and comfort of BION implanted electrical stimulation: implications for FES applications. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2007 , 15, 577-86 | 4.8 | 13 | | 68 | Elastomeric skin selection for a fluid-filled artificial fingertip. <i>Journal of Applied Polymer Science</i> , 2013 , 127, 4624-4633 | 2.9 | 12 | | 67 | Utility of contact detection reflexes in prosthetic hand control 2013, | | 12 | | 66 | Design for an inexpensive but effective cochlear implant. <i>Otolaryngology - Head and Neck Surgery</i> , 1998 , 118, 235-41 | 5.5 | 12 | | 65 | Development of a BIONic muscle spindle for prosthetic proprioception. <i>IEEE Transactions on Biomedical Engineering</i> , 2007 , 54, 1031-41 | 5 | 12 | | 64 | Effects of muscle immobilization at different lengths on tetrodotoxin-induced disuse atrophy. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2003 , 11, 209-17 | 4.8 | 12 | | 63 | The effect of sarcomere length on triad location in intact feline caudofeomoralis muscle fibres.
Journal of Muscle Research and Cell Motility, 1998, 19, 473-7 | 3.5 | 11 | | 62 | What might the brain know about muscles, limbs and spinal circuits?. <i>Progress in Brain Research</i> , 1999 , 123, 405-9 | 2.9 | 11 | | 61 | Optimal control principles for sensory transducers 1985 , 409-415 | | 11 | | 60 | Development of a Physics-Based Target Shooting Game to Train Amputee Users of Multijoint Upper Limb Prostheses. <i>Presence: Teleoperators and Virtual Environments</i> , 2012 , 21, 85-95 | 2.9 | 10 | | 59 | Biomimetic Tactile Sensor for Control of Grip 2007 , | | 10 | | 58 | Minimally Invasive Implantation of a Micropacemaker Into the Pericardial Space. <i>Circulation:</i> Arrhythmia and Electrophysiology, 2018 , 11, e006307 | 6.4 | 10 | 2011, 9 57 56 Understanding haptics by evolving mechatronic systems. Progress in Brain Research, 2011, 192, 129-44 2.9 9 Virtual biomechanics: a new method for online reconstruction of force from EMG recordings. 55 3.2 9 Journal of Neurophysiology, 2012, 108, 3333-41 Feasibility of prosthetic posture sensing via injectable electronic modules. *IEEE Transactions on* 4.8 9 54 Neural Systems and Rehabilitation Engineering, 2007, 15, 295-309 Directional motor control. Trends in Neurosciences, 1996, 19, 137-8 53 13.3 9 Relationships between full-day arm movement characteristics and developmental status in infants with typical development as they learn to reach: An observational study. Gates Open Research, 2018 52 9 2.4 , 2, 17 Predicting EMG with generalized Volterra kernel model. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual 8 51 0.9 International Conference, 2008, 2008, 201-4 BIONIImplants for Therapeutic and Functional Electrical Stimulation. Frontiers in Neuroscience, 50 2000, Learning Manipulation Graphs from Demonstrations Using Multimodal Sensory Signals 2018, 8 49 A percutaneously implantable fetal pacemaker. Annual International Conference of the IEEE 48 Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual 0.9 International Conference, **2014**, 2014, 4459-63 BioTac ^|^mdash;Biomimetic Multi-modal Tactile Sensor^|^mdash;. Journal of the Robotics Society 47 0.1 7 of Japan, 2012, 30, 496-498 46 Taking control of prosthetic arms. JAMA - Journal of the American Medical Association, 2009, 301, 670-1 27.4 Design and fabrication of disposable percutaneous chemical sensors 2005, 7 45 Learning to Switch Between Sensorimotor Primitives Using Multimodal Haptic Signals. Lecture 0.9 44 Notes in Computer Science, 2016, 170-182 Minimally invasive implantable fetal micropacemaker: mechanical testing and technical 43 3.1 7 refinements. Medical and Biological Engineering and Computing, 2016, 54, 1819-1830 The importance of biomechanics. Advances in Experimental Medicine and Biology, 2002, 508, 481-7 42 3.6 7 Design and fabrication of an injection tool for neuromuscular microstimulators. Annals of 6 41 4.7 Biomedical Engineering, 2009, 37, 1858-70 Mechanical loading of rigid intramuscular implants. Biomedical Microdevices, 2007, 9, 901-10 6 40 3.7 | 39 | Muscle and Limb Mechanics. Comprehensive Physiology, 2017, 7, 429-462 | 7.7 | 5 | |----|---|-----|---| | 38 | Sparse optimal motor estimation (SOME) for extracting commands for prosthetic limbs. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2013 , 21, 104-11 | 4.8 | 5 | | 37 | PREDICTION OF ELBOW TRAJECTORY FROM SHOULDER ANGLES USING NEURAL NETWORKS. International Journal of Computational Intelligence and Applications, 2008, 07, 333-349 | 1.2 | 5 | | 36 | The influence of temporal predictability on express visuomotor responses. <i>Journal of Neurophysiology</i> , 2021 , 125, 731-747 | 3.2 | 5 | | 35 | Shoulder kinematics plus contextual target information enable control of multiple distal joints of a simulated prosthetic arm and hand. <i>Journal of NeuroEngineering and Rehabilitation</i> , 2021 , 18, 3 | 5.3 | 5 | | 34 | An Information Highway To the Auditory Nerve. Seminars in Hearing, 1996, 17, 309-316 | 2 | 4 | | 33 | Architectural features of multiarticular muscles. Human Movement Science, 1994, 13, 545-556 | 2.4 | 4 | | 32 | Analytical Modeling for Computing Lead Stress in a Novel Epicardial Micropacemaker. <i>Cardiovascular Engineering and Technology</i> , 2017 , 8, 96-105 | 2.2 | 3 | | 31 | Haptic Human-Robot Interaction. <i>IEEE Transactions on Haptics</i> , 2012 , 5, 193-195 | 2.7 | 3 | | 30 | Preventing Ischial Pressure Ulcers: III. Clinical Pilot Study of Chronic Neuromuscular Electrical Stimulation. <i>Applied Bionics and Biomechanics</i> , 2011 , 8, 345-359 | 1.6 | 3 | | 29 | The effects of training set on prediction of elbow trajectory from shoulder trajectory during reaching to targets. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2006 , 2006, 5483-6 | | 3 | | 28 | Flexible communication and control protocol for injectable neuromuscular interfaces. <i>IEEE Transactions on Biomedical Circuits and Systems</i> , 2007 , 1, 19-27 | 5.1 | 3 | | 27 | Issues in cochlear prosthetics from an international survey of opinions. <i>International Journal of Technology Assessment in Health Care</i> , 1991 , 7, 403-10 | 1.8 | 3 | | 26 | Learning to use Muscles. <i>Journal of Human Kinetics</i> , 2021 , 76, 9-33 | 2.6 | 3 | | 25 | Percutaneous fiber-optic sensor for the detection of chemotherapy-induced apoptosis in vivo 2010, | | 2 | | 24 | Percutaneously injectable fetal pacemaker: electrodes, mechanical design and implantation. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2012 , 2012, 6600-3 | 0.9 | 2 | | 23 | Biomimetic posture sensing and feedback for proprioception. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2005 , 2005, 7389-92 | | 2 | | 22 | Motor partitioning: Epiphenomena masquerading as control theory. <i>Behavioral and Brain Sciences</i> , 1989 , 12, 660-661 | 0.9 | 2 | ## (2010-2021) | 21 | Force variability is mostly not motor noise: Theoretical implications for motor control. <i>PLoS Computational Biology</i> , 2021 , 17, e1008707 | 5 | 2 | |----|---|------|---| | 20 | A new approach to medical diagnostic decision support. <i>Journal of Biomedical Informatics</i> , 2021 , 116, 103723 | 10.2 | 2 | | 19 | Natural and accelerated recovery from brain damage: experimental and theoretical approaches. <i>IEEE Pulse</i> , 2012 , 3, 61-5 | 0.7 | 1 | | 18 | Estimation of excitatory drive from sparse motoneuron sampling. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2012 , 2012, 3628-31 | 0.9 | 1 | | 17 | Percutaneously injectable fetal pacemaker: electronics, pacing thresholds, and power budget. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2012 , 2012, 5730-3 | 0.9 | 1 | | 16 | Dissemination: Getting BCIs to the People Who Need Them 2012 , 338-349 | | 1 | | 15 | General-pupose technology for a general-purpose nervous system 2008, | | 1 | | 14 | A FAILURE ANALYSIS OF INTRAMUSCULAR RIGID IMPLANTS FOR MUSCLE CONTRACTIONS. <i>Modern Physics Letters B</i> , 2008 , 22, 791-796 | 1.6 | 1 | | 13 | Biomimetic design of neural prostheses587-601 | | 1 | | 12 | Design and fabrication of a disposable, percutaneous glucose sensor 2006 , | | 1 | | 11 | Evaluating the use of a tactile sensor for measuring carton compliance. <i>Nordic Pulp and Paper Research Journal</i> , 2020 , 35, 362-369 | 1.1 | 1 | | 10 | Trial-by-trial modulation of express visuomotor responses induced by symbolic or barely detectable cues. <i>Journal of Neurophysiology</i> , 2021 , 126, 1507-1523 | 3.2 | 1 | | 9 | Preventing Ischial Pressure Ulcers: II. Biomechanics. <i>Applied Bionics and Biomechanics</i> , 2011 , 8, 333-343 | 1.6 | 0 | | 8 | : A Bio-Inspired Machine Learning Approach to Estimating Posture in Robots Driven by Compliant Tendons. <i>Frontiers in Neurorobotics</i> , 2021 , 15, 679122 | 3.4 | O | | 7 | A Non-spiking Neuron Model With Dynamic Leak to Avoid Instability in Recurrent Networks. <i>Frontiers in Computational Neuroscience</i> , 2021 , 15, 656401 | 3.5 | 0 | | 6 | Turning Neural Prosthetics Into Viable Products. Frontiers in Robotics and AI, 2021, 8, 754114 | 2.8 | O | | 5 | Physiology and Computational Principles of Muscle Force Generation 2022 , 2779-2795 | | 0 | | 4 | Is There an Equilibrium Point Hypothesis?. <i>Motor Control</i> , 2010 , 14, e19-e22 | 1.3 | | - What can we expect from models of motor control?. Behavioral and Brain Sciences, 1995, 18, 767-768 0.9 - 2 Relating Muscle Activity to Movement in Animals **1999**, 777-786 - Spinal Cord, Integrated (Non CPG) Models of **2022**, 3270-3281