Vinicius Cotta-de-Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5627555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overactive WASp in X-linked neutropenia leads to aberrant B-cell division and accelerated plasma cell generation. Journal of Allergy and Clinical Immunology, 2022, 149, 1069-1084.	2.9	5
2	Zika virus disrupts gene expression in human myoblasts and myotubes: Relationship with susceptibility to infection. PLoS Neglected Tropical Diseases, 2022, 16, e0010166.	3.0	3
3	VLA-4 as a Central Target for Modulating Neuroinflammatory Disorders. NeuroImmunoModulation, 2021, 28, 213-221.	1.8	3
4	Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors. Journal of Leukocyte Biology, 2020, 108, 1067-1079.	3.3	50
5	Zika virus targets the human thymic epithelium. Scientific Reports, 2020, 10, 1378.	3.3	16
6	CD8low T cells expanded following acute Trypanosoma cruzi infection and benznidazole treatment are a relevant subset of IFN-1 ³ producers. PLoS Neglected Tropical Diseases, 2020, 14, e0008969.	3.0	3
7	Thymus Transcriptome of TGF-β Superfamily. , 2019, , 247-254.		0
8	Development of Thymic Regulatory T Lymphocytes. , 2019, , 255-272.		1
9	Open educational resources in immunology education. American Journal of Physiology - Advances in Physiology Education, 2019, 43, 103-109.	1.6	5
10	Zika virus infects human blood mononuclear cells. BMC Infectious Diseases, 2019, 19, 986.	2.9	11
11	Small interference ITGA6 gene targeting in the human thymic epithelium differentially regulates the expression of immunological synapse-related genes. Cell Adhesion and Migration, 2018, 12, 1-16.	2.7	5
12	Neuroendocrine Control of Macrophage Development and Function. Frontiers in Immunology, 2018, 9, 1440.	4.8	23
13	Sphingosine-1-Phosphate Receptor 1 Is Involved in Non-Obese Diabetic Mouse Thymocyte Migration Disorders. International Journal of Molecular Sciences, 2018, 19, 1446.	4.1	9
14	Lack of Galectin-3 Disrupts Thymus Homeostasis in Association to Increase of Local and Systemic Glucocorticoid Levels and Steroidogenic Machinery. Frontiers in Endocrinology, 2018, 9, 365.	3.5	8
15	Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genetics and Molecular Biology, 2018, 41, 167-179.	1.3	34
16	Editorial: T-Cell Migration in Health and Disease. Frontiers in Immunology, 2017, 8, 132.	4.8	1
17	Unraveling Chagas disease transmission through the oral route: Gateways to Trypanosoma cruzi infection and target tissues. PLoS Neglected Tropical Diseases, 2017, 11, e0005507.	3.0	61
18	Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. PLoS ONE, 2016, 11, e0148137.	2.5	10

#	Article	IF	CITATIONS
19	Trypanosoma cruzi Experimental Infection Impacts on the Thymic Regulatory T Cell Compartment. PLoS Neglected Tropical Diseases, 2016, 10, e0004285.	3.0	24
20	A Tale from TGF-Î ² Superfamily for Thymus Ontogeny and Function. Frontiers in Immunology, 2015, 6, 442.	4.8	13
21	Laminin-Mediated Interactions in Thymocyte Migration and Development. Frontiers in Immunology, 2015, 6, 579.	4.8	24
22	Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskottââ,¬â€œAldrich Syndrome. Frontiers in Immunology, 2015, 6, 47.	4.8	25
23	EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus. Journal of Leukocyte Biology, 2015, 98, 883-896.	3.3	16
24	Trypanosoma cruzi Infection through the Oral Route Promotes a Severe Infection in Mice: New Disease Form from an Old Infection?. PLoS Neglected Tropical Diseases, 2015, 9, e0003849.	3.0	58
25	Trypanosoma cruzi Entrance through Systemic or Mucosal Infection Sites Differentially Modulates Regional Immune Response Following Acute Infection in Mice. Frontiers in Immunology, 2013, 4, 216.	4.8	15
26	Fibronectin modulates thymocyte-thymic epithelial cell interactions following Trypanosoma cruzi infection. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 825-831.	1.6	11
27	<scp>W</scp> iskott– <scp>A</scp> ldrich syndrome protein controls antigenâ€presenting cellâ€driven <scp>CD</scp> 4 ⁺ Tâ€cell motility by regulating adhesion to intercellular adhesion moleculeâ€1. Immunology, 2012, 137, 183-196.	4.4	24
28	Defective T-Lymphocyte Migration to Muscles in Dystrophin-Deficient Mice. American Journal of Pathology, 2012, 181, 593-604.	3.8	11
29	New Strategies for Acute Liver Failure: Focus on Xenotransplantation Therapy. Cell Medicine, 2010, 1, 47-54.	5.0	1
30	Hepatocyte xenotransplantation for treating liver disease. Xenotransplantation, 2010, 17, 181-187.	2.8	40
31	Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes. Journal of Experimental Medicine, 2010, 207, 1145-1152.	8.5	67
32	Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes. Journal of Cell Biology, 2010, 189, i13-i13.	5.2	0
33	Wiskott–Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15424-15429.	7.1	98
34	The Wiskott-Aldrich syndrome protein is required for the function of CD4+CD25+Foxp3+ regulatory T cells. Journal of Experimental Medicine, 2007, 204, 381-391.	8.5	183
35	Lymphocyte-Dependent and Th2 Cytokine-Associated Colitis in Mice Deficient in Wiskott-Aldrich Syndrome Protein. Gastroenterology, 2007, 133, 1188-1197.	1.3	76
36	Atrophy of mesenteric lymph nodes in experimental Chagas' disease: differential role of Fas/Fas-L and TNFRI/TNF pathways. Microbes and Infection, 2006, 8, 221-231.	1.9	26

VINICIUS COTTA-DE-ALMEIDA

#	Article	IF	CITATIONS
37	Trypanosoma cruzi: Alteration in the lymphoid compartments following interruption of infection by early acute benznidazole therapy in mice. Experimental Parasitology, 2006, 114, 228-234.	1.2	18
38	Altered thymocyte migration during experimental acute <i>Trypanosoma cruzi</i> infection: combined role of fibronectin and the chemokines CXCL12 and CCL4. European Journal of Immunology, 2006, 36, 1486-1493.	2.9	69
39	Abnormal Thymic Microenvironment in Insulin-Like Growth Factor-II Transgenic Mice. NeuroImmunoModulation, 2005, 12, 100-112.	1.8	12
40	Impaired migration of NOD mouse thymocytes: a fibronectin receptor-related defect. European Journal of Immunology, 2004, 34, 1578-1587.	2.9	31
41	<i>Trypanosoma cruzi</i> infection modulates intrathymic contents of extracellular matrix ligands and receptors and alters thymocyte migration. European Journal of Immunology, 2003, 33, 2439-2448.	2.9	50
42	Experimental Trypanosoma cruzi infection alters the shaping of the central and peripheral T-cell repertoire. Microbes and Infection, 2003, 5, 825-832.	1.9	61
43	A New Method for Rapidly Generating Gene-Targeting Vectors by Engineering BACs Through Homologous Recombination in Bacteria. Genome Research, 2003, 13, 2190-2194.	5.5	48
44	Benznidazole Treatment following Acute Trypanosoma cruzi Infection Triggers CD8 + T-Cell Expansion and Promotes Resistance to Reinfection. Antimicrobial Agents and Chemotherapy, 2002, 46, 3790-3796.	3.2	32
45	Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines?. Trends in Immunology, 2002, 23, 305-313.	6.8	129
46	Evidence for a perforin-mediated mechanism controlling cardiac inflammation in Trypanosoma cruzi infection. International Journal of Experimental Pathology, 2002, 83, 67-79.	1.3	33