
## Shareen Doak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5627488/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines inÂvitro. Nanotoxicology, 2022, , 1-21. | 3.0  | 3         |
| 2  | The Road to Achieving the European Commission's Chemicals Strategy for Nanomaterial<br>Sustainability—A PATROLS Perspective on New Approach Methodologies. Small, 2022, 18, e2200231.                         | 10.0 | 9         |
| 3  | The influence of exposure approaches to <i>inÂvitro</i> lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology, 2022, 16, 114-134.                                           | 3.0  | 6         |
| 4  | The application of existing genotoxicity methodologies for grouping of nanomaterials: towards an integrated approach to testing and assessment. Particle and Fibre Toxicology, 2022, 19, 32.                  | 6.2  | 5         |
| 5  | Common Considerations for Genotoxicity Assessment of Nanomaterials. Frontiers in Toxicology, 2022, 4, .                                                                                                       | 3.1  | 8         |
| 6  | Industrial-relevant TiO2 types do not promote cytotoxicity in the A549 or TK6 cell lines regardless of cell specific interaction. Toxicology in Vitro, 2022, 83, 105415.                                      | 2.4  | 2         |
| 7  | In Vitro Primaryâ€Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant<br>Fewâ€Layer Graphene. Small, 2021, 17, e2002551.                                                    | 10.0 | 21        |
| 8  | Multiple-endpoint in vitro carcinogenicity test in human cell line TK6 distinguishes carcinogens from non-carcinogens and highlights mechanisms of action. Archives of Toxicology, 2021, 95, 321-336.         | 4.2  | 6         |
| 9  | Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro. Journal of Nanobiotechnology, 2021, 19, 24.                                                         | 9.1  | 21        |
| 10 | In Vitro Threeâ€Ðimensional Liver Models for Nanomaterial DNA Damage Assessment. Small, 2021, 17,<br>e2006055.                                                                                                | 10.0 | 17        |
| 11 | Simulating Nanomaterial Transformation in Cascaded Biological Compartments to Enhance the<br>Physiological Relevance of In Vitro Dosing Regimes: Optional or Required?. Small, 2021, 17, e2004630.            | 10.0 | 11        |
| 12 | Advanced In Vitro Models for Replacement of Animal Experiments. Small, 2021, 17, e2101474.                                                                                                                    | 10.0 | 6         |
| 13 | Understanding the impact of more realistic low-dose, prolonged engineered nanomaterial exposure on genotoxicity using 3D models of the human liver. Journal of Nanobiotechnology, 2021, 19, 193.              | 9.1  | 15        |
| 14 | <i>In vitro</i> and integrated <i>in vivo</i> strategies to reduce animal use in genotoxicity testing.<br>Mutagenesis, 2021, 36, 389-400.                                                                     | 2.6  | 7         |
| 15 | Inter-laboratory variability of A549 epithelial cells grown under submerged and air-liquid interface conditions. Toxicology in Vitro, 2021, 75, 105178.                                                       | 2.4  | 26        |
| 16 | Comprehensive framework for human health risk assessment of nanopesticides. Nature<br>Nanotechnology, 2021, 16, 955-964.                                                                                      | 31.5 | 48        |
| 17 | Overview of Nanotoxicology in Humans and the Environment; Developments, Challenges and Impacts.<br>Molecular and Integrative Toxicology, 2021, , 1-40.                                                        | 0.5  | 0         |
| 18 | Detection of urethane-induced genotoxicity <i>in vitro</i> using metabolically competent human 2D and 3D spheroid culture models. Mutagenesis, 2020, 35, 445-452.                                             | 2.6  | 3         |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The effect of chronic dosing and p53 status on the genotoxicity of pro-oxidant chemicals <i>in vitro</i> . Mutagenesis, 2020, 35, 479-489.                                             | 2.6  | 1         |
| 20 | Translating Scientific Advances in the AOP Framework to Decision Making for Nanomaterials.<br>Nanomaterials, 2020, 10, 1229.                                                           | 4.1  | 29        |
| 21 | Risk Governance of Emerging Technologies Demonstrated in Terms of its Applicability to<br>Nanomaterials. Small, 2020, 16, e2003303.                                                    | 10.0 | 28        |
| 22 | An Alternative Perspective towards Reducing the Risk of Engineered Nanomaterials to Human Health.<br>Small, 2020, 16, e2002002.                                                        | 10.0 | 17        |
| 23 | Dietary and lifestyle factors effect erythrocyte <i>PIG-A</i> mutant frequency in humans. Mutagenesis, 2020, 35, 405-413.                                                              | 2.6  | 6         |
| 24 | Adaptation of the <i>in vitro</i> micronucleus assay for genotoxicity testing using 3D liver models supporting longer-term exposure durations. Mutagenesis, 2020, 35, 319-330.         | 2.6  | 29        |
| 25 | Comparison of passive-dosed and solvent spiked exposures of pro-carcinogen, benzo[a]pyrene, to human lymphoblastoid cell line, MCL-5. Toxicology in Vitro, 2020, 67, 104905.           | 2.4  | 8         |
| 26 | Advanced 3D Liver Models for In vitro Genotoxicity Testing Following Long-Term Nanomaterial<br>Exposure. Journal of Visualized Experiments, 2020, , .                                  | 0.3  | 14        |
| 27 | Emerging Standards and Analytical Science for Nanoenabled Medical Products. Annual Review of Analytical Chemistry, 2020, 13, 431-452.                                                  | 5.4  | 11        |
| 28 | Nanomaterials and Innate Immunity: A Perspective of the Current Status in Nanosafety. Chemical<br>Research in Toxicology, 2020, 33, 1061-1073.                                         | 3.3  | 34        |
| 29 | Utilisation of the STEAP protein family in a diagnostic setting may provide a more comprehensive prognosis of prostate cancer. PLoS ONE, 2019, 14, e0220456.                           | 2.5  | 28        |
| 30 | Cellular Defense Mechanisms Following Nanomaterial Exposure: A Focus on Oxidative Stress and Cytotoxicity. Nanoscience and Technology, 2019, , 243-254.                                | 1.5  | 2         |
| 31 | In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Particle and Fibre Toxicology, 2019, 16, 8.                                   | 6.2  | 40        |
| 32 | Horizon scanning for novel and emerging in vitro mammalian cell mutagenicity test systems. Mutation<br>Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 847, 403024. | 1.7  | 3         |
| 33 | STEAP2 Knockdown Reduces the Invasive Potential of Prostate Cancer Cells. Scientific Reports, 2018, 8, 6252.                                                                           | 3.3  | 33        |
| 34 | A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies. Mutation<br>Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 825, 51-58.     | 1.7  | 68        |
| 35 | Skin tissue engineering using 3D bioprinting: An evolving research field. Journal of Plastic,<br>Reconstructive and Aesthetic Surgery, 2018, 71, 615-623.                              | 1.0  | 136       |
| 36 | Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods.<br>Toxicological Sciences, 2018, 164, 391-416.                                       | 3.1  | 71        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using human lymphoblastoid cells. Archives of Toxicology, 2018, 92, 935-951.                                      | 4.2  | 25        |
| 38 | Investigating FlowSight® imaging flow cytometry as a platform to assess chemically induced micronuclei using human lymphoblastoid cells in vitro. Mutagenesis, 2018, 33, 283-289.                                       | 2.6  | 12        |
| 39 | Considerations for the Human Health Implications of Nanotheranostics. , 2018, , 279-303.                                                                                                                                |      | 3         |
| 40 | Reprint of: A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.<br>Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 834, 35-41.                          | 1.7  | 9         |
| 41 | Genotoxicity and Cancer. , 2017, , 423-445.                                                                                                                                                                             |      | 6         |
| 42 | The role of intracellular trafficking of CdSe/ZnS QDs on their consequent toxicity profile. Journal of Nanobiotechnology, 2017, 15, 45.                                                                                 | 9.1  | 31        |
| 43 | Investigation of J-shaped dose-responses induced by exposure to the alkylating agent N -methyl- N<br>-nitrosourea. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 819, 38-46.              | 1.7  | 4         |
| 44 | Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomaterialia, 2017, 55, 204-213.                                        | 8.3  | 13        |
| 45 | NanoGenotoxicology: present and the future. Mutagenesis, 2017, 32, 1-4.                                                                                                                                                 | 2.6  | 32        |
| 46 | Evaluation of the automated MicroFlow® and Metafer™ platforms for high-throughput<br>micronucleus scoring and dose response analysis in human lymphoblastoid TK6 cells. Archives of<br>Toxicology, 2017, 91, 2689-2698. | 4.2  | 17        |
| 47 | Characterizing Nanoparticles in Biological Matrices: Tipping Points in Agglomeration State and<br>Cellular Delivery <i>In Vitro</i> . ACS Nano, 2017, 11, 11986-12000.                                                  | 14.6 | 33        |
| 48 | Aligning nanotoxicology with the 3Rs: What is needed to realise the short, medium and long-term opportunities?. Regulatory Toxicology and Pharmacology, 2017, 91, 257-266.                                              | 2.7  | 36        |
| 49 | Critical review of the current and future challenges associated with advanced <i>in vitro</i> systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis, 2017, 32, 233-241.                       | 2.6  | 75        |
| 50 | Is Nickel Chloride really a Nonâ€Genotoxic Carcinogen?. Basic and Clinical Pharmacology and<br>Toxicology, 2017, 121, 10-15.                                                                                            | 2.5  | 21        |
| 51 | Coating of Quantum Dots strongly defines their effect on lysosomal health and autophagy. Acta<br>Biomaterialia, 2017, 48, 195-205.                                                                                      | 8.3  | 42        |
| 52 | The 3Rs as a framework to support a 21st century approach for nanosafety assessment. Nano Today,<br>2017, 12, 10-13.                                                                                                    | 11.9 | 65        |
| 53 | Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis, 2017, 32, 215-232.                                                                                                                     | 2.6  | 43        |
| 54 | Factors affecting the <i>in vitro</i> micronucleus assay for evaluation of nanomaterials. Mutagenesis, 2017, 32, 151-159.                                                                                               | 2.6  | 31        |

| #  | Article                                                                                                                                                                                                                                                                         | IF      | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 55 | Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice. Frontiers in Surgery, 2017, 4, 4.                                                                                                                                                   | 1.4     | 37        |
| 56 | Exposure to Engineered Nanomaterials: Impact on DNA Repair Pathways. International Journal of<br>Molecular Sciences, 2017, 18, 1515.                                                                                                                                            | 4.1     | 31        |
| 57 | A Crosstalk Between <i>K ras</i> (Kirsten Rat Sarcoma Viral Oncogene Homologue) and Adherence<br>Molecular Complex Leads to Disassociation of Cells—A Possible Contribution Towards Metastasis in<br>Colorectal Cancer. Journal of Cellular Biochemistry, 2016, 117, 2340-2345. | 2.6     | 1         |
| 58 | Opinion of the Scientific Committee on consumer safety (SCCS) - Opinion on the use of<br>2,2′-methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) (nano) – S79 – In cosm<br>products. Regulatory Toxicology and Pharmacology, 2016, 76, 215-216.        | etic2.7 | 4         |
| 59 | A comparison of the genotoxicity of benzo[ a ]pyrene in four cell lines with differing metabolic capacity. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 808, 8-19.                                                                               | 1.7     | 32        |
| 60 | Empirical analysis of BMD metrics in genetic toxicology part I: <i>in vitro</i> analyses to provide robust potency rankings and support MOA determinations. Mutagenesis, 2016, 31, 255-263.                                                                                     | 2.6     | 68        |
| 61 | The clastogenicity of 4NQO is cell-type dependent and linked to cytotoxicity, length of exposure and p53 proficiency. Mutagenesis, 2016, 31, 171-180.                                                                                                                           | 2.6     | 16        |
| 62 | Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surgery, 2016, 5, 227-41.                                                                                                                                                         | 1.1     | 30        |
| 63 | Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDermâ"¢).<br>Particle and Fibre Toxicology, 2015, 13, 50.                                                                                                                            | 6.2     | 51        |
| 64 | Acute Dosing and p53-Deficiency Promote Cellular Sensitivity to DNA Methylating Agents.<br>Toxicological Sciences, 2015, 144, 357-365.                                                                                                                                          | 3.1     | 9         |
| 65 | Cell Type-Dependent Changes in CdSe/ZnS Quantum Dot Uptake and Toxic Endpoints. Toxicological Sciences, 2015, 144, 246-258.                                                                                                                                                     | 3.1     | 53        |
| 66 | New approaches to advance the use of genetic toxicology analyses for human health risk assessment.<br>Toxicology Research, 2015, 4, 667-676.                                                                                                                                    | 2.1     | 34        |
| 67 | Increased expression of ARF GTPases in prostate cancer tissue. SpringerPlus, 2015, 4, 342.                                                                                                                                                                                      | 1.2     | 11        |
| 68 | Genotoxic capacity of Cd/Se semiconductor quantum dots with differing surface chemistries.<br>Mutagenesis, 2015, 31, gev061.                                                                                                                                                    | 2.6     | 21        |
| 69 | Quantum dot induced cellular perturbations involving varying toxicity pathways. Toxicology<br>Research, 2015, 4, 623-633.                                                                                                                                                       | 2.1     | 13        |
| 70 | A role for STEAP2 in prostate cancer progression. Clinical and Experimental Metastasis, 2014, 31, 909-920.                                                                                                                                                                      | 3.3     | 48        |
| 71 | Automation and validation of micronucleus detection in the 3D EpiDermâ,,¢ human reconstructed skin<br>assay and correlation with 2D dose responses. Mutagenesis, 2014, 29, 165-175.                                                                                             | 2.6     | 27        |
| 72 | Unraveling the effects of siRNA carrier systems on cell physiology: a multiparametric approach demonstrated on dextran nanogels. Nanomedicine, 2014, 9, 61-76.                                                                                                                  | 3.3     | 5         |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The effect of nanoparticle degradation on poly(methacrylic acid)-coated quantum dot toxicity: The importance of particle functionality assessment in toxicology. Acta Biomaterialia, 2014, 10, 732-741.   | 8.3 | 57        |
| 74 | Chromosome Breakage Induced by the Genotoxic Agents Mitomycin C and Cytosine arabinoside is Concentration and p53 Dependent. Toxicological Sciences, 2014, 140, 94-102.                                   | 3.1 | 24        |
| 75 | Recommendations, evaluation and validation of a semi-automated, fluorescent-based scoring protocol for micronucleus testing in human cells. Mutagenesis, 2014, 29, 155-164.                               | 2.6 | 36        |
| 76 | Genotoxins induce binucleation in L5178Y and TK6 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 770, 29-34.                                                           | 1.7 | 11        |
| 77 | Putative prognostic epithelial-to-mesenchymal transition biomarkers for aggressive prostate cancer.<br>Experimental and Molecular Pathology, 2013, 95, 220-226.                                           | 2.1 | 29        |
| 78 | Fluorescent non-porous silica nanoparticles for long-term cell monitoring: Cytotoxicity and particle functionality. Acta Biomaterialia, 2013, 9, 9183-9193.                                               | 8.3 | 40        |
| 79 | Genotoxicity of nanomaterials: Refining strategies and tests for hazard identification. Environmental<br>and Molecular Mutagenesis, 2013, 54, 229-239.                                                    | 2.2 | 46        |
| 80 | Influence of DNA Repair on Nonlinear Dose-Responses for Mutation. Toxicological Sciences, 2013, 132, 87-95.                                                                                               | 3.1 | 65        |
| 81 | Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology, 2013, 7, 144-156.                                                           | 3.0 | 46        |
| 82 | The jury is still out on the safety of silver nanoparticles. BMJ, The, 2013, 346, f227-f227.                                                                                                              | 6.0 | 2         |
| 83 | The Role of Adhesion Molecules as Biomarkers for the Aggressive Prostate Cancer Phenotype. PLoS<br>ONE, 2013, 8, e81666.                                                                                  | 2.5 | 6         |
| 84 | The In Vitro Micronucleus Assay and Kinetochore Staining: Methodology and Criteria for the<br>Accurate Assessment of Genotoxicity and Cytotoxicity. Methods in Molecular Biology, 2013, 1044,<br>269-289. | 0.9 | 13        |
| 85 | Pro-oxidant Induced DNA Damage in Human Lymphoblastoid Cells: Homeostatic Mechanisms of<br>Genotoxic Tolerance. Toxicological Sciences, 2012, 128, 387-397.                                               | 3.1 | 30        |
| 86 | Modification of Schottky interface by the inclusion of DNA interlayer to create metal / organic / inorganic structures. , 2012, , .                                                                       |     | 2         |
| 87 | In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD<br>guidelines. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 745, 104-111.      | 1.7 | 200       |
| 88 | Preface. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 745, 1-3.                                                                                                            | 1.7 | 3         |
| 89 | Real-Time Reverse-Transcription Polymerase Chain Reaction: Technical Considerations for Gene<br>Expression Analysis. Methods in Molecular Biology, 2012, 817, 251-270.                                    | 0.9 | 10        |
|    |                                                                                                                                                                                                           |     |           |

90 Genotoxicity and Cancer. , 2012, , 243-261.

| #   | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano, 2012, 6, 5767-5783.                                                                                                                                                                           | 14.6 | 239       |
| 92  | The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials, 2012, 33, 163-170.                                                                                                                                | 11.4 | 129       |
| 93  | Quantum Dots for Multiplexed Detection and Characterisation of Prostate Cancer Cells Using a Scanning Near-Field Optical Microscope. PLoS ONE, 2012, 7, e31592.                                                                                                           | 2.5  | 16        |
| 94  | Investigating Mechanisms for Non-linear Genotoxic Responses, and Analysing Their Effects in Binary<br>Combination. Genes and Environment, 2012, 34, 179-185.                                                                                                              | 2.1  | 13        |
| 95  | Dextran Coated Ultrafine Superparamagnetic Iron Oxide Nanoparticles: Compatibility with Common Fluorometric and Colorimetric Dyes. Analytical Chemistry, 2011, 83, 3778-3785.                                                                                             | 6.5  | 55        |
| 96  | STEM mode in the SEM: A practical tool for nanotoxicology. Nanotoxicology, 2011, 5, 215-227.                                                                                                                                                                              | 3.0  | 26        |
| 97  | N-Methylpurine DNA Glycosylase Plays a Pivotal Role in the Threshold Response of Ethyl<br>Methanesulfonate–Induced Chromosome Damage. Toxicological Sciences, 2011, 119, 346-358.                                                                                         | 3.1  | 39        |
| 98  | Genotoxic thresholds, DNA repair, and susceptibility in human populations. Toxicology, 2010, 278, 305-310.                                                                                                                                                                | 4.2  | 39        |
| 99  | Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews, 2010, 1, 5358.                                                                                                                                                                    | 3.7  | 861       |
| 100 | Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at<br>Swansea University UK in support of OECD draft Test Guideline 487. Mutation Research - Genetic<br>Toxicology and Environmental Mutagenesis, 2010, 702, 189-192. | 1.7  | 10        |
| 101 | NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, 2009, 30,<br>3891-3914.                                                                                                                                                         | 11.4 | 998       |
| 102 | Non-linear dose–response of DNA-reactive genotoxins: Recommendations for data analysis. Mutation<br>Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 678, 95-100.                                                                                       | 1.7  | 63        |
| 103 | Confounding experimental considerations in nanogenotoxicology. Mutagenesis, 2009, 24, 285-293.                                                                                                                                                                            | 2.6  | 208       |
| 104 | High-resolution imaging using a novel atomic force microscope and confocal laser scanning<br>microscope hybrid instrument: essential sample preparation aspects. Histochemistry and Cell Biology,<br>2008, 130, 909-916.                                                  | 1.7  | 34        |
| 105 | No-observed effect levels are associated with up-regulation of MGMT following MMS exposure.<br>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 648, 9-14.                                                                                  | 1.0  | 33        |
| 106 | Aneuploidy in upper gastro-intestinal tract cancers—A potential prognostic marker?. Mutation<br>Research - Genetic Toxicology and Environmental Mutagenesis, 2008, 651, 93-104.                                                                                           | 1.7  | 15        |
| 107 | Mechanistic Influences for Mutation Induction Curves after Exposure to DNA-Reactive Carcinogens.<br>Cancer Research, 2007, 67, 3904-3911.                                                                                                                                 | 0.9  | 185       |
| 108 | Identification of Early p53 Mutations in Clam Ileocystoplasties Using Restriction Site Mutation Assay.<br>Urology, 2007, 70, 905-909.                                                                                                                                     | 1.0  | 8         |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Fluorescence imaging and investigations of directly labelled chromosomes using scanning near-field optical microscopy. Ultramicroscopy, 2007, 107, 308-312.                                                                                        | 1.9  | 10        |
| 110 | Comparative genomic hybridization (CGH) of augmentation cystoplasties. International Journal of Urology, 2007, 14, 539-544.                                                                                                                        | 1.0  | 12        |
| 111 | Bone morphogenic factor gene dosage abnormalities in prostatic intraepithelial neoplasia and prostate cancer. Cancer Genetics and Cytogenetics, 2007, 176, 161-165.                                                                                | 1.0  | 16        |
| 112 | Do dose response thresholds exist for genotoxic alkylating agents?. Mutagenesis, 2005, 20, 389-398.                                                                                                                                                | 2.6  | 108       |
| 113 | Fluorescence in situ hybridisation analysis of chromosomal aberrations in gastric tissue: the potential involvement of Helicobacter pylori. British Journal of Cancer, 2005, 92, 1759-1766.                                                        | 6.4  | 28        |
| 114 | Differential expression of the MAD2, BUB1 and HSP27 genes in Barrett's oesophagus—their association<br>with aneuploidy and neoplastic progression. Mutation Research - Fundamental and Molecular<br>Mechanisms of Mutagenesis, 2004, 547, 133-144. | 1.0  | 40        |
| 115 | Generation of locus-specific probes for interphase fluorescence in situ hybridisation—application in<br>Barrett's esophagus. Experimental and Molecular Pathology, 2004, 77, 26-33.                                                                | 2.1  | 6         |
| 116 | The bile acid deoxycholic acid (DCA) at neutral pH activates NF-ÂB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis, 2003, 25, 317-323.                                                                                   | 2.8  | 113       |
| 117 | Early p53 mutations in nondysplastic Barrett's tissue detected by the restriction site mutation (RSM) methodology. British Journal of Cancer, 2003, 88, 1271-1276.                                                                                 | 6.4  | 25        |
| 118 | Characterisation of p53 status at the gene, chromosomal and protein levels in oesophageal adenocarcinoma. British Journal of Cancer, 2003, 89, 1729-1735.                                                                                          | 6.4  | 36        |
| 119 | Chromosome 4 hyperploidy represents an early genetic aberration in premalignant Barrett's oesophagus. Gut, 2003, 52, 623-628.                                                                                                                      | 12.1 | 62        |
| 120 | Analysis of the premalignant stages of Barrett's oesophagus through to adenocarcinoma by<br>comparative genomic hybridization. European Journal of Gastroenterology and Hepatology, 2002, 14,<br>1179-1186.                                        | 1.6  | 26        |
| 121 | Genetic pathways involved in the progression of Barrett's metaplasia to adenocarcinoma. British<br>Journal of Surgery, 2002, 89, 824-837.                                                                                                          | 0.3  | 108       |