Katarzyna Kiec-Kononowicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5627290/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies for bypassing the membrane barrier in multidrug resistant Gramâ€negative bacteria. FEBS Letters, 2011, 585, 1682-1690.	1.3	192
2	Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. aureus. Antibiotics, 2013, 2, 28-45.	1.5	126
3	Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorganic and Medicinal Chemistry, 2006, 14, 5230-5240.	1.4	90
4	Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorganic and Medicinal Chemistry, 2010, 18, 5090-5102.	1.4	85
5	The histamine H3R antagonist DL77 attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Scientific Reports, 2018, 8, 13077.	1.6	58
6	Identification of selenocompounds with promising properties to reverse cancer multidrug resistance. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2821-2824.	1.0	53
7	Recent advances in histamine H ₃ receptor antagonists/inverse agonists. Expert Opinion on Therapeutic Patents, 2010, 20, 1147-1169.	2.4	51
8	Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise?. Journal of Hazardous Materials, 2017, 324, 22-30.	6.5	49
9	Molecular and functional interaction between GPR18 and cannabinoid CB2 G-protein-coupled receptors. Relevance in neurodegenerative diseases. Biochemical Pharmacology, 2018, 157, 169-179.	2.0	47
10	Aryl-1,3,5-triazine derivatives as histamine H4 receptor ligands. European Journal of Medicinal Chemistry, 2014, 83, 534-546.	2.6	46
11	2-Phenylquinoline <i>S. aureus</i> NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction. Journal of Medicinal Chemistry, 2018, 61, 7827-7848.	2.9	46
12	Synthesis and evaluation of in vivo activity of diphenylhydantoin basic derivatives. European Journal of Medicinal Chemistry, 2004, 39, 1013-1027.	2.6	45
13	Design, Synthesis, and Anticonvulsant Activity of New Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)propanamides and 2-(2,5-Dioxopyrrolidin-1-yl)butanamides. Journal of Medicinal Chemistry, 2015, 58, 5274-5286.	2.9	45
14	Fluorescent GPCR Ligands as New Tools in Pharmacology. Current Medicinal Chemistry, 2008, 15, 2132-2143.	1.2	44
15	Novel Multitarget-Directed Ligands Aiming at Symptoms and Causes of Alzheimer's Disease. ACS Chemical Neuroscience, 2018, 9, 1195-1214.	1.7	44
16	The dual-active histamine H3 receptor antagonist and acetylcholine esterase inhibitor E100 ameliorates stereotyped repetitive behavior and neuroinflammmation in sodium valproate induced autism in mice. Chemico-Biological Interactions, 2019, 312, 108775.	1.7	44
17	The 1,3,5-Triazine Derivatives as Innovative Chemical Family of 5-HT6 Serotonin Receptor Agents with Therapeutic Perspectives for Cognitive Impairment. International Journal of Molecular Sciences, 2019, 20, 3420.	1.8	43
18	Synthesis, α1-adrenoceptor antagonist activity, and SAR study of novel arylpiperazine derivatives of phenytoin. Bioorganic and Medicinal Chemistry, 2008, 16, 5982-5998.	1.4	42

#	Article	IF	CITATIONS
19	Design, synthesis and biological evaluation of new hybrid anticonvulsants derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide derivatives. Bioorganic and Medicinal Chemistry, 2015, 23, 2548-2561.	1.4	41
20	In the search for a lead structure among series of potent and selective hydantoin 5â€ <scp>HT</scp> ₇ R agents: The drugâ€likeness in vitro study. Chemical Biology and Drug Design, 2017, 90, 1295-1306.	1.5	41
21	Molecular modeling of A ₁ and A _{2A} adenosine receptors: Comparison of rhodopsin―and β ₂ â€adrenergicâ€based homology models through the docking studies. Journal of Computational Chemistry, 2009, 30, 14-32.	1.5	40
22	New developments around histamine H ₃ receptor antagonists/inverse agonists: a patent review (2010 – present). Expert Opinion on Therapeutic Patents, 2014, 24, 89-111.	2.4	40
23	Amine–alkyl derivatives of hydantoin: New tool to combat resistant bacteria. European Journal of Medicinal Chemistry, 2011, 46, 5807-5816.	2.6	39
24	Imidazo-thiazine, -diazinone and -diazepinone derivatives. Synthesis, structure and benzodiazepine receptor binding. European Journal of Medicinal Chemistry, 2001, 36, 407-419.	2.6	38
25	Antimicrobial activity of 5-arylidene aromatic derivatives of hydantoin. Part 2. ll Farmaco, 2002, 57, 39-44.	0.9	37
26	Antimycobacterial activity of 5-arylidene aromatic derivatives of hydantoin. Il Farmaco, 2002, 57, 355-362.	0.9	36
27	Synthesis and biological activity of tricyclic aryloimidazo-, pyrimido-, and diazepinopurinediones. Bioorganic and Medicinal Chemistry, 2006, 14, 7258-7281.	1.4	36
28	SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives. European Journal of Medicinal Chemistry, 2014, 78, 324-339.	2.6	36
29	Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay. Antimicrobial Agents and Chemotherapy, 2016, 60, 1974-1983.	1.4	36
30	Antinociceptive effects of novel histamine H ₃ and H ₄ receptor antagonists and their influence on morphine analgesia of neuropathic pain in the mouse. British Journal of Pharmacology, 2018, 175, 2897-2910.	2.7	36
31	MF-8, a novel promising arylpiperazine-hydantoin based 5-HT 7 receptor antagonist: In vitro drug-likeness studies and in vivo pharmacological evaluation. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 878-883.	1.0	36
32	Ether derivatives of 3-piperidinopropan-1-ol as non-imidazole histamine H3 receptor antagonists. Bioorganic and Medicinal Chemistry, 2006, 14, 3522-3529.	1.4	35
33	Phenylethyl-substituted pyrimido[2,1-f]purinediones and related compounds: Structure–activity relationships as adenosine A1 and A2A receptor ligands. Bioorganic and Medicinal Chemistry, 2007, 15, 6956-6974.	1.4	35
34	N9-Benzyl-substituted 1,3-dimethyl- and 1,3-dipropyl-pyrimido[2,1-f]purinediones: Synthesis and structure–activity relationships at adenosine A1 and A2A receptors. Bioorganic and Medicinal Chemistry, 2007, 15, 5003-5017.	1.4	34
35	The 5-aromatic hydantoin-3-acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P-glycoprotein (ABCB1): Synthesis, crystallographic and biological studies. Bioorganic and Medicinal Chemistry, 2016, 24, 2815-2822.	1.4	33
36	The computer-aided discovery of novel family of the 5-HT6 serotonin receptor ligands among derivatives of 4-benzyl-1,3,5-triazine. European Journal of Medicinal Chemistry, 2017, 135, 117-124.	2.6	33

#	Article	IF	CITATIONS
37	Synthesis and biological activity of tricyclic cycloalkylimidazo-, pyrimido- and diazepinopurinediones. European Journal of Medicinal Chemistry, 2011, 46, 3590-3607.	2.6	32
38	Anticonvulsive effect of nonimidazole histamine H3 receptor antagonists. Behavioural Pharmacology, 2014, 25, 245-252.	0.8	31
39	Five-membered heterocycles. Part III. Aromaticity of 1,3-imidazole in 5+n hetero-bicyclic molecules. Journal of Molecular Structure, 2003, 655, 397-403.	1.8	30
40	New Dual Small Molecules for Alzheimer's Disease Therapy Combining Histamine H ₃ Receptor (H3R) Antagonism and Calcium Channels Blockade with Additional Cholinesterase Inhibition. Journal of Medicinal Chemistry, 2019, 62, 11416-11422.	2.9	30
41	Antiarrhythmic properties of phenylpiperazine derivatives of phenytoin with α1-adrenoceptor affinities. Bioorganic and Medicinal Chemistry, 2012, 20, 2290-2303.	1.4	29
42	1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases. Bioorganic and Medicinal Chemistry, 2013, 21, 7435-7452.	1.4	29
43	Search for new tools to combat Gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin. Bioorganic and Medicinal Chemistry, 2013, 21, 135-145.	1.4	29
44	Chlorophenoxy aminoalkyl derivatives as histamine H3R ligands and antiseizure agents. Bioorganic and Medicinal Chemistry, 2016, 24, 53-72.	1.4	28
45	Multifunctional Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)-3-methoxypropanamides with Anticonvulsant and Antinociceptive Properties. Journal of Medicinal Chemistry, 2017, 60, 8565-8579.	2.9	28
46	Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18. Scientific Reports, 2016, 6, 32255.	1.6	27
47	The Histamine H3 Receptor Antagonist E159 Reverses Memory Deficits Induced by Dizocilpine in Passive Avoidance and Novel Object Recognition Paradigm in Rats. Frontiers in Pharmacology, 2017, 8, 709.	1.6	27
48	Progress in the development of histamine H ₃ receptor antagonists/inverse agonists: a patent review (2013-2017). Expert Opinion on Therapeutic Patents, 2018, 28, 175-196.	2.4	27
49	Search for a 5-CT alternative. <i>In vitro</i> and <i>in vivo</i> evaluation of novel pharmacological tools: 3-(1-alkyl-1 <i>H</i> -imidazol-5-yl)-1 <i>H</i> -indole-5-carboxamides, low-basicity 5-HT ₇ receptor agonists. MedChemComm, 2018, 9, 1882-1890.	3.5	27
50	Search for new multi-target compounds against Alzheimer's disease among histamine H3 receptor ligands. European Journal of Medicinal Chemistry, 2020, 185, 111785.	2.6	27
51	Development of ChiralN-Alkylcarbamates as New Leads for Potent and Selective H3-Receptor Antagonists: Synthesis, Capillary Electrophoresis, and in Vitro and Oral in Vivo Activityâ€. Journal of Medicinal Chemistry, 1999, 42, 593-600.	2.9	26
52	Impact of the aryl substituent kind and distance from pyrimido[2,1-f]purindiones on the adenosine receptor selectivity and antagonistic properties. European Journal of Medicinal Chemistry, 2003, 38, 397-402.	2.6	26
53	Aryl-1,3,5-triazine ligands of histamine H4 receptor attenuate inflammatory and nociceptive response to carrageen, zymosan and lipopolysaccharide. Inflammation Research, 2017, 66, 79-95.	1.6	26
54	Selenazolinium Salts as "Small Molecule Catalysts―with High Potency against ESKAPE Bacterial Pathogens. Molecules, 2017, 22, 2174.	1.7	26

#	Article	IF	CITATIONS
55	Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors. Molecules, 2019, 24, 1487.	1.7	26
56	Biological activity of hydantoin derivatives on P-glycoprotein (ABCB1) of mouse lymphoma cells. Anticancer Research, 2010, 30, 4867-71.	0.5	26
57	Dualâ€Acting Diether Derivatives of Piperidine and Homopiperidine with Histamine H ₃ Receptor Antagonistic and Anticholinesterase Activity. Archiv Der Pharmazie, 2012, 345, 591-597.	2.1	25
58	Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. Drug Design, Development and Therapy, 2016, Volume 10, 3879-3898.	2.0	25
59	The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats. Frontiers in Neuroscience, 2018, 12, 42.	1.4	25
60	The Dual-Active Histamine H3 Receptor Antagonist and Acetylcholine Esterase Inhibitor E100 Alleviates Autistic-Like Behaviors and Oxidative Stress in Valproic Acid Induced Autism in Mice. International Journal of Molecular Sciences, 2020, 21, 3996.	1.8	25
61	(2-Arylethenyl)-1,3,5-triazin-2-amines as a novel histamine H4 receptor ligands. European Journal of Medicinal Chemistry, 2015, 103, 238-251.	2.6	24
62	H3 histamine receptor antagonist pitolisant reverses some subchronic disturbances induced by olanzapine in mice. Metabolic Brain Disease, 2016, 31, 1023-1029.	1.4	24
63	Fluorescent-Labeled Selective Adenosine A _{2B} Receptor Antagonist Enables Competition Binding Assay by Flow Cytometry. Journal of Medicinal Chemistry, 2018, 61, 4301-4316.	2.9	24
64	Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands. European Journal of Medicinal Chemistry, 2018, 152, 223-234.	2.6	24
65	Novel naphthyloxy derivatives – Potent histamine H3 receptor ligands. Synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry, 2018, 26, 2573-2585.	1.4	24
66	SYNTHESIS AND SPECTROSCOPIC PROPERTIES OF FUSED 5-ARYLIDENE-2-THIOHYDANTOIN DERIVATIVES. Phosphorus, Sulfur and Silicon and the Related Elements, 1992, 73, 235-248.	0.8	23
67	Synthesis, structure and antiarrhythmic properties evaluation of new basic derivatives of 5,5-diphenylhydantoin. European Journal of Medicinal Chemistry, 2003, 38, 555-566.	2.6	23
68	Tricyclic oxazolo[2,3-f]purinediones: potency as adenosine receptor ligands and anticonvulsants. Bioorganic and Medicinal Chemistry, 2004, 12, 4895-4908.	1.4	23
69	Pharmacophore models based studies on the affinity and selectivity toward 5-HT1A with reference to α1-adrenergic receptors among arylpiperazine derivatives of phenytoin. Bioorganic and Medicinal Chemistry, 2011, 19, 1349-1360.	1.4	23
70	Synthesis and SAR-study for novel arylpiperazine derivatives of 5-arylidenehydantoin with α1-adrenoceptor antagonistic properties. Bioorganic and Medicinal Chemistry, 2012, 20, 4245-4257.	1.4	23
71	Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design. Molecules, 2015, 20, 13894-13912.	1.7	23
72	Pronounced activity of aromatic selenocyanates against multidrug resistant ESKAPE bacteria. New Journal of Chemistry, 2019, 43, 6021-6031.	1.4	23

#	Article	IF	CITATIONS
73	Imidazolidine-4-one derivatives in the search for novel chemosensitizers of Staphylococcus aureus MRSA: Synthesis, biological evaluation and molecular modeling studies. European Journal of Medicinal Chemistry, 2015, 101, 313-325.	2.6	22
74	Structure-activity relationships of imidazothiazinones and analogs as antagonists of the cannabinoid-activated orphan G protein-coupled receptor GPR18. European Journal of Medicinal Chemistry, 2018, 155, 381-397.	2.6	22
75	Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT7 receptor low-basicity agonists, potential neuropathic painkillers. European Journal of Medicinal Chemistry, 2019, 170, 261-275.	2.6	22
76	Simultaneous Blockade of Histamine H3 Receptors and Inhibition of Acetylcholine Esterase Alleviate Autistic-Like Behaviors in BTBR T+ tf/J Mouse Model of Autism. Biomolecules, 2020, 10, 1251.	1.8	22
77	Anticonvulsant properties of histamine H3 receptor ligands belonging to N-substituted carbamates of imidazopropanol. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4886-4891.	1.0	21
78	Rational design in search for 5-phenylhydantoin selective 5-HT7R antagonists. Molecular modeling, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2016, 112, 258-269.	2.6	21
79	Antagonism of Histamine H3 receptors Alleviates Pentylenetetrazole-Induced Kindling and Associated Memory Deficits by Mitigating Oxidative Stress, Central Neurotransmitters, and c-Fos Protein Expression in Rats. Molecules, 2020, 25, 1575.	1.7	21
80	PSB 603 – a known selective adenosine A2B receptor antagonist – has anti-inflammatory activity in mice. Biomedicine and Pharmacotherapy, 2021, 135, 111164.	2.5	21
81	N-Alkenyl and cycloalkyl carbamates as dual acting histamine H3 and H4 receptor ligands. Bioorganic and Medicinal Chemistry, 2011, 19, 2850-2858.	1.4	20
82	Similarities and differences in affinity and binding modes of tricyclic pyrimido- and pyrazinoxanthines at human and rat adenosine receptors. Bioorganic and Medicinal Chemistry, 2016, 24, 4347-4362.	1.4	20
83	Cholinesterase inhibitory activity of chlorophenoxy derivatives—Histamine H3 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4140-4145.	1.0	20
84	Chiral Discrimination of Some Annelated Xanthine Derivatives by the Dirhodium Method. European Journal of Organic Chemistry, 2000, 2000, 3489-3496.	1.2	19
85	Modes of Xanthine Complexation to Dirhodium Tetrakis[(R)-α-methoxy-α- (trifluoromethyl)-phenylacetate] in Solution and in the Solid State. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2001, 56, 319-324.	0.3	19
86	Imidazo[2,1-b]thiazepines: synthesis, structure and evaluation of benzodiazepine receptor binding. European Journal of Medicinal Chemistry, 2004, 39, 205-218.	2.6	19
87	Azines as histamine H4 receptor antagonists. Frontiers in Bioscience - Scholar, 2012, S4, 967-987.	0.8	19
88	Search for influence of spatial properties on affinity at α1-adrenoceptor subtypes for phenylpiperazine derivatives of phenytoin. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6152-6156.	1.0	18
89	The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice. Physiology and Behavior, 2015, 151, 189-197.	1.0	18
90	Low-basicity 5-HT7 Receptor Agonists Synthesized Using the van Leusen Multicomponent Protocol. Scientific Reports, 2017, 7, 1444.	1.6	18

#	Article	IF	CITATIONS
91	Computer-Aided Studies for Novel Arylhydantoin 1,3,5-Triazine Derivatives as 5-HT6 Serotonin Receptor Ligands with Antidepressive-Like, Anxiolytic and Antiobesity Action In Vivo. Molecules, 2018, 23, 2529.	1.7	18
92	Studies on Anticonvulsant Effects of Novel Histamine H3R Antagonists in Electrically and Chemically Induced Seizures in Rats. International Journal of Molecular Sciences, 2018, 19, 3386.	1.8	18
93	The histamine H3 receptor inverse agonist pitolisant reduces body weight in obese mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 875-881.	1.4	18
94	Synthesis and computer-aided SAR studies for derivatives of phenoxyalkyl-1,3,5-triazine as the new potent ligands for serotonin receptors 5-HT6. European Journal of Medicinal Chemistry, 2019, 178, 740-751.	2.6	18
95	Are the Hydantoin-1,3,5-triazine 5-HT6R Ligands a Hope to a Find New Procognitive and Anti-Obesity Drug? Considerations Based on Primary In Vivo Assays and ADME-Tox Profile In Vitro. Molecules, 2019, 24, 4472.	1.7	18
96	Salsolinol—neurotoxic or Neuroprotective?. Neurotoxicity Research, 2020, 37, 286-297.	1.3	18
97	The study of cellular cytotoxicity of argireline - an anti-aging peptide Acta Biochimica Polonica, 2014, 61, .	0.3	18
98	Reaction of 5,5-diphenyl-2-thiohydantoin with 1,2-dibromoethane.crystal and molecular structures of 2,3-dihydro-6,6-diphenylimi-dazo-[2,1-b]-thiazol-5(6h)-one and 2,3-dihydro-5,5-diphenylimi-dazo-[2,-1-b]-thiazol-6(5h)-one and their reactivity. Tetrahedron, 1985, 41, 4593-4602.	1.0	17
99	Azines and Diazines as Potential Histamine H3-Receptor Antagonists. Archiv Der Pharmazie, 1995, 328, 445-450.	2.1	17
100	Histamine H3 and H4 receptor affinity of branched 3-(1H-imidazol-4-yl)propyl N-alkylcarbamates. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6682-6685.	1.0	17
101	Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity. Frontiers in Microbiology, 2016, 7, 622.	1.5	17
102	Novel multi-target directed ligands based on annelated xanthine scaffold with aromatic substituents acting on adenosine receptor and monoamine oxidase B. Synthesis, in vitro and in silico studies. Bioorganic and Medicinal Chemistry, 2019, 27, 1195-1210.	1.4	17
103	Rational design of new multitarget histamine H3 receptor ligands as potential candidates for treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2020, 207, 112743.	2.6	17
104	Fluorescent GPCR Ligands as New Tools in Pharmacology-Update, Years 2008- Early 2014. Current Medicinal Chemistry, 2014, 21, 3962-3975.	1.2	17
105	Structural and Molecular Insight into Piperazine and Piperidine Derivatives as Histamine H ₃ and Sigma-1 Receptor Antagonists with Promising Antinociceptive Properties. ACS Chemical Neuroscience, 2022, 13, 1-15.	1.7	17
106	Synthesis and Properties ofcis- andtrans-4-Hydroxypraziquantel. Archiv Der Pharmazie, 1991, 324, 235-237.	2.1	16
107	Synthesis, structure–activity relationship of some new anti-arrhythmic 5-arylidene imidazolidine-2,4-dione derivatives. European Journal of Medicinal Chemistry, 2005, 40, 259-269. 	2.6	16
108	Piperidine variations in search for non-imidazole histamine H3 receptor ligands. Bioorganic and Medicinal Chemistry, 2008, 16, 8729-8736.	1.4	16

#	Article	IF	CITATIONS
109	Comparison of the in Vitro Hemolytic Effects Produced by Alkoxyacetic Acids on Human and Rat Erythrocytes. International Journal of Occupational Medicine and Environmental Health, 2008, 21, 147-55.	0.6	16
110	Synthesis, biological activity and molecular modelling studies of tricyclic alkylimidazo-, pyrimido- and diazepinopurinediones. Purinergic Signalling, 2013, 9, 395-414.	1.1	16
111	Biphenyloxy-alkyl-piperidine and azepane derivatives as histamine H3 receptor ligands. Bioorganic and Medicinal Chemistry, 2017, 25, 5341-5354.	1.4	16
112	Computer-aided insights into receptor-ligand interaction for novel 5-arylhydantoin derivatives as serotonin 5-HT 7 receptor agents with antidepressant activity. European Journal of Medicinal Chemistry, 2018, 147, 102-114.	2.6	16
113	Role of Histamine H3 Receptor Antagonists on Intraocular Pressure Reduction in Rabbit Models of Transient Ocular Hypertension and Glaucoma. International Journal of Molecular Sciences, 2019, 20, 981.	1.8	16
114	Discovery of Tricyclic Xanthines as Agonists of the Cannabinoid-Activated Orphan G-Protein-Coupled Receptor GPR18. ACS Medicinal Chemistry Letters, 2020, 11, 2024-2031.	1.3	16
115	In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium. European Journal of Pharmacology, 2016, 777, 49-59.	1.7	15
116	KSK19 – Novel histamine H3 receptor ligand reduces body weight in diet induced obese mice. Biochemical Pharmacology, 2019, 168, 193-203.	2.0	15
117	Novel selective agonist of GPR18, PSBâ€KKâ€1415 exerts potent antiâ€inflammatory and antiâ€nociceptive activities in animal models of intestinal inflammation and inflammatory pain. Neurogastroenterology and Motility, 2021, 33, e14003.	1.6	15
118	Modulation of multidrug efflux pump activity by new hydantoin derivatives on colon adenocarcinoma cells without inducing apoptosis. Anticancer Research, 2011, 31, 3285-8.	0.5	15
119	Fused 2-Thiohydantoin Derivatives: Evaluation as Potential Antioxidants. Archiv Der Pharmazie, 1997, 330, 85-90.	2.1	14
120	Crystallographic and spectroscopic studies of 5-arylidene-2-amino-imidazol-4-ones. Journal of Molecular Structure, 2009, 930, 126-134.	1.8	14
121	Antiparkinsonian Effects of Novel Adenosine A _{2A} Receptor Antagonists. Archiv Der Pharmazie, 2011, 344, 20-27.	2.1	14
122	Structural modifications and in vitro pharmacological evaluation of 4-pyridyl-piperazine derivatives as an active and selective histamine H3 receptor ligands. Bioorganic Chemistry, 2019, 91, 103071.	2.0	14
123	<histamine amnesia="" antagonist="" attenuates="" by="" dizocilpine="" e177="" h3="" induced="" receptor="" without<br="">modulation of anxiety-like behaviors in rats. Neuropsychiatric Disease and Treatment, 2019, Volume 15, 531-542.</histamine>	1.0	14
124	Pyrazoles as Potential Histamine H3-Receptor Antagonists. Archiv Der Pharmazie, 1995, 328, 469-472.	2.1	13
125	Micellar liquid chromatography for lipophilicity determination of new biologically active 1,3â€purinodiones. Journal of Separation Science, 2010, 33, 1546-1557.	1.3	13
126	Synthesis and biological activity of novel tert -amylphenoxyalkyl (homo)piperidine derivatives as histamine H 3 R ligands. Bioorganic and Medicinal Chemistry, 2017, 25, 2701-2712.	1.4	13

#	Article	IF	CITATIONS
127	4-tert-Pentylphenoxyalkyl derivatives – Histamine H3 receptor ligands and monoamine oxidase B inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3596-3600.	1.0	13
128	Synthesis and computer-aided analysis of the role of linker for novel ligands of the 5-HT6 serotonin receptor among substituted 1,3,5-triazinylpiperazines. Bioorganic Chemistry, 2019, 84, 319-325.	2.0	13
129	Computational Investigations on the Binding Mode of Ligands for the Cannabinoid-Activated G Protein-Coupled Receptor GPR18. Biomolecules, 2020, 10, 686.	1.8	13
130	Structure and activity studies of glycine receptor ligands. Part 7. Structural remarks on arylidene–imidazoline-4-one glycinates and glycinamides. Journal of Molecular Structure, 2001, 597, 73-81.	1.8	12
131	Atypical cardiostimulant β -adrenoceptor in the rat heart: stereoselective antagonism by bupranolol but lack of effect by some bupranolol analogues. British Journal of Pharmacology, 2003, 139, 1548-1554.	2.7	12
132	Optimization and preclinical evaluation of novel histamine H3receptor ligands: Acetyl and propionyl phenoxyalkyl piperazine derivatives. Bioorganic and Medicinal Chemistry, 2018, 26, 6056-6066.	1.4	12
133	The Neuroprotective Effects of Histamine H3 Receptor Antagonist E177 on Pilocarpine-Induced Status Epilepticus in Rats. Molecules, 2019, 24, 4106.	1.7	12
134	REACTION OF 5,5-DIPHENYL-2-THIOHYDANTOIN WITH 1,4-DIBROMOBUTANE. THE CRYSTAL AND MOLECULAR STRUCTURE OF 2,3,4,5-TETRAHYDRO-7,7-DIPHENYLIMIDAZO-[2,1-b]-THIAZEPINE-8(7H)-ONE. Phosphorus, Sulfur and Silicon and the Related Elements, 1989, 42, 191-200.	0.8	11
135	Diether derivatives of homo- or substituted piperidines as non-imidazole histamine H3 receptor ligands. Bioorganic and Medicinal Chemistry, 2009, 17, 3037-3042.	1.4	11
136	5-Arylideneimidazolones with Amine at Position 3 as Potential Antibiotic Adjuvants against Multidrug Resistant Bacteria. Molecules, 2019, 24, 438.	1.7	11
137	Anti-inflammatory, antioxidant, and antiparkinsonian effects of adenosine A2A receptor antagonists. Pharmacology Biochemistry and Behavior, 2015, 132, 71-78.	1.3	10
138	The Synthesis of 1,3,5â€ŧriazine Derivatives and JNJ7777120 Analogues with Histamine H ₄ Receptor Affinity and Their Interaction with <i>PTEN</i> Promoter. Chemical Biology and Drug Design, 2016, 88, 254-263.	1.5	10
139	Evaluation of antidepressant-like and anxiolytic-like activity of purinedione-derivatives with affinity for adenosine A2A receptors in mice. Pharmacological Reports, 2016, 68, 1285-1292.	1.5	10
140	Histamine H3 Receptor Ligands in the Group of (Homo)piperazine Derivatives. Current Medicinal Chemistry, 2018, 25, 1609-1626.	1.2	10
141	Anticonvulsant and reproductive toxicological studies of the imidazole-based histamine H3R antagonist 2-18 in mice. Drug Design, Development and Therapy, 2018, Volume 12, 179-194.	2.0	10
142	Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands. Bioorganic and Medicinal Chemistry, 2019, 27, 1254-1262.	1.4	10
143	Dual Target Ligands with 4-tert-Butylphenoxy Scaffold as Histamine H3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. International Journal of Molecular Sciences, 2020, 21, 3411.	1.8	10
144	KD-64—A new selective A2A adenosine receptor antagonist has anti-inflammatory activity but contrary to the non-selective antagonist—Caffeine does not reduce diet-induced obesity in mice. PLoS ONE, 2020, 15, e0229806.	1.1	10

#	Article	IF	CITATIONS
145	Structural modifications in the distal, regulatory region of histamine H3 receptor antagonists leading to the identification of a potent anti-obesity agent. European Journal of Medicinal Chemistry, 2021, 213, 113041.	2.6	10
146	Arylidene imidazothiazoles. Synthesis, structure and benzodiazepine receptor binding. Journal of Heterocyclic Chemistry, 1999, 36, 257-263.	1.4	9
147	Phenylalanine derivatives with modulating effects on human α1-glycine receptors and anticonvulsant activity in strychnine-induced seizure model in male adult rats. Epilepsy Research, 2017, 138, 124-131.	0.8	9
148	Tricyclic xanthine derivatives containing a basic substituent: adenosine receptor affinity and drug-related properties. MedChemComm, 2018, 9, 951-962.	3.5	9
149	N-Substituted piperazine derivatives as potential multitarget agents acting on histamine H3 receptor and cancer resistance proteins. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127522.	1.0	9
150	Novel, Dual Targetâ€Directed Annelated Xanthine Derivatives Acting on Adenosine Receptors and Monoamine Oxidase B. ChemMedChem, 2020, 15, 772-786.	1.6	9
151	An insight into the structure of 5-spiro aromatic derivatives of imidazolidine-2,4-dione, a new group of very potent inhibitors of tumor multidrug resistance in T-lymphoma cells. Bioorganic Chemistry, 2021, 109, 104735.	2.0	9
152	The activity of 16 new hydantoin compounds on the intrinsic and overexpressed efflux pump system of Staphylococcus aureus. In Vivo, 2012, 26, 223-9.	0.6	9
153	Chalcones as Potential Ligands for the Treatment of Parkinson's Disease. Pharmaceuticals, 2022, 15, 847.	1.7	9
154	Synthesis, Properties and Structure of 1-Acetyl-6-(4-chlorobenzylidene)-2,3,5,6-tetrahydroimidazo[2,1-b]imidazole-3,5-dione. Archiv Der Pharmazie, 1995, 328, 119-123.	2.1	8
155	Crystal and molecular structure of 5-benzylidene-2-thiohydantoin: The S…S intermolecular interactions between two CS groups. Journal of Molecular Structure, 2009, 921, 109-113.	1.8	8
156	Probing Substituents in the 1- and 3-Position: Tetrahydropyrazino-Annelated Water-Soluble Xanthine Derivatives as Multi-Target Drugs With Potent Adenosine Receptor Antagonistic Activity. Frontiers in Chemistry, 2018, 6, 206.	1.8	8
157	Anticonvulsant evaluation of novel non-imidazole histamine H3R antagonists in different convulsion models in rats. Pharmacology Biochemistry and Behavior, 2018, 170, 14-24.	1.3	8
158	Cyanobiphenyls: Novel H3 receptor ligands with cholinesterase and MAO B inhibitory activity as multitarget compounds for potential treatment of Alzheimer's disease. Bioorganic Chemistry, 2021, 114, 105129.	2.0	8
159	Reaction of 5,5-diphenyl-2-thiohydantoin with ethyl-2,3-dibromopropionate. Crystal and molecular structure of ethyl-2-{2,3-dihydro-6,6-diphenylimidazo-[2,1-b]-thiazol-5(6H)-one} formate. Journal of Crystallographic and Spectroscopic Research, 1987, 17, 485-494.	0.3	7
160	Structure-Activity Relationship of Some New Anti-Arrhythmic Phenytoin Derivatives. Archiv Der Pharmazie, 2000, 333, 357-364.	2.1	7
161	Methods for the synthesis of xanthine-derived polycyclic fused systems. Heterocyclic Communications, 2013, 19, 297-310.	0.6	7
162	Study on the effect of EMD386088, a 5-HT6 receptor partial agonist, in enhancing the anti-immobility action of some antidepressants in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 37-49.	1.4	7

#	Article	IF	CITATIONS
163	The role of aryl-topology in balancing between selective and dual 5-HT ₇ R/5-HT _{1A} actions of 3,5-substituted hydantoins. MedChemComm, 2018, 9, 1033-1044.	3.5	7
164	Phenylpiperazine 5,5-Dimethylhydantoin Derivatives as First Synthetic Inhibitors of Msr(A) Efflux Pump in Staphylococcus epidermidis. Molecules, 2020, 25, 3788.	1.7	7
165	In Vitro and In Silico ADME-Tox Profiling and Safety Significance of Multifunctional Monoamine Oxidase Inhibitors Targeting Neurodegenerative Diseases. ACS Chemical Neuroscience, 2020, 11, 3793-3801.	1.7	7
166	Effects of GPR18 Ligands on Body Weight and Metabolic Parameters in a Female Rat Model of Excessive Eating. Pharmaceuticals, 2021, 14, 270.	1.7	7
167	The GPR18 Agonist PSB-KD-107 Exerts Endothelium-Dependent Vasorelaxant Effects. Pharmaceuticals, 2021, 14, 799.	1.7	7
168	GPR18-Mediated Relaxation of Human Isolated Pulmonary Arteries. International Journal of Molecular Sciences, 2022, 23, 1427.	1.8	7
169	5-arylidene(thio)hydantoin derivatives as modulators of cancer efflux pump. Acta Poloniae Pharmaceutica, 2012, 69, 149-56.	0.3	7
170	Structure and activity studies of glycine receptor ligands. Part 8. Arylidene-imidazoline-4-one aminoacids. Journal of Molecular Structure, 2003, 649, 25-36.	1.8	6
171	LC–MS–MS Method for the Analysis of New Non-Imidazole Histamine H3 Receptor Antagonist 1-[3-(4-tert-Butylphenoxy)propyl]piperidine in Rat Serum—Application to Pharmacokinetic Studies. Chromatographia, 2011, 73, 913-919.	0.7	6
172	MH-3: evidence for non-competitive antagonism towards the low-affinity site of β1-adrenoceptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 743-752.	1.4	6
173	Antinociceptive effect of co-administered NMDA and histamine H4 receptor antagonists in a rat model of acute pain. Pharmacological Reports, 2017, 69, 222-228.	1.5	6
174	4-(3-Aminoazetidin-1-yl)pyrimidin-2-amines as High-Affinity Non-imidazole Histamine H3Receptor Agonists with in Vivo Central Nervous System Activity. Journal of Medicinal Chemistry, 2019, 62, 10848-10866.	2.9	6
175	Metabolic benefits of novel histamine H3 receptor ligands in the model of excessive eating: The importance of intrinsic activity and pharmacokinetic properties. Biomedicine and Pharmacotherapy, 2021, 142, 111952.	2.5	6
176	Human Eosinophils - Potential Pharmacological Model Applied in Human Histamine H ₄ Receptor Research. Current Medicinal Chemistry, 2015, 22, 2087-2099.	1.2	6
177	Molecular Modeling of an Orphan GPR18 Receptor. Letters in Drug Design and Discovery, 2019, 16, 1167-1174.	0.4	6
178	Synthesis, Structure and Properties of 5,5-Diphenyl-2,3,5,6-tetrahydroimidazo-[2,1-b]-imidazoline-3,6-dione. Archiv Der Pharmazie, 1995, 328, 517-521.	2.1	5
179	Conformation of cis-4-Hydroxy-praziquantel and its crystal and molecular structure. Archiv Der Pharmazie, 2010, 324, 479-482.	2.1	5
180	Crystallographic studies of (Z) and (E) isomers of 2-amino-5-(2-chlorobenzylidene)-1-methyl-1H-imidazol-4(5H)-one. Journal of Molecular Structure, 2010, 966, 14-17.	1.8	5

#	Article	IF	CITATIONS
181	Synthesis and Analgesic Activity of Annelated Xanthine Derivatives in Experimental Models in Rodents. Archiv Der Pharmazie, 2015, 348, 704-714.	2.1	5
182	Pharmacological characterization and binding modes of novel racemic and optically active phenylalanine-based antagonists of AMPA receptors. European Journal of Medicinal Chemistry, 2017, 138, 874-883.	2.6	5
183	8-Benzylaminoxanthine scaffold variations for selective ligands acting on adenosine A2A receptors. Design, synthesis and biological evaluation. Bioorganic Chemistry, 2020, 101, 104033.	2.0	5
184	Pitolisant protects mice chronically treated with corticosterone from some behavioral but not metabolic changes in corticosterone-induced depression model. Pharmacology Biochemistry and Behavior, 2020, 196, 172974.	1.3	5
185	Eosinophils adhesion assay as a tool for phenotypic drug screening - The pharmacology of 1,3,5 – Triazine and 1H-indole like derivatives against the human histamine H4 receptor. European Journal of Pharmacology, 2021, 890, 173611.	1.7	5
186	Dual-targeting Approach on Histamine H3 and Sigma-1 Receptor Ligands as Promising Pharmacological Tools in the Treatment of CNS-linked Disorders. Current Medicinal Chemistry, 2021, 28, 2974-2995.	1.2	5
187	Monocyclic and Fused Azines and Azoles as Histamine H4Receptor Ligands. Current Medicinal Chemistry, 2016, 23, 1870-1925.	1.2	5
188	Charge-assisted N–H…Cl hydrogen bonds in the structures of 5-benzylidene-imidazol-4-one glycinate hydrochlorides. Journal of Molecular Structure, 2009, 934, 123-128.	1.8	4
189	The Search for Histamine H 4 Receptor Ligands with Anticancer Activity among Novel (Thio)urea Derivatives. ChemistrySelect, 2019, 4, 10943-10952.	0.7	4
190	Design, synthesis, and <i>in vitro</i> and <i>in vivo</i> characterization of 1-{4-[4-(substituted)piperazin-1-yl]butyl}guanidines and their piperidine analogues as histamine H ₃ receptor antagonists. MedChemComm, 2019, 10, 234-251.	3.5	4
191	The Structural Determinants for α1-Adrenergic/Serotonin Receptors Activity among Phenylpiperazine-Hydantoin Derivatives. Molecules, 2021, 26, 7025.	1.7	4
192	Unnatural D-amino acids as building blocks of new peptidomimetics. Acta Poloniae Pharmaceutica, 2006, 63, 430-3.	0.3	4
193	Binding of 1-[3-(4-tert-butyl-phenoxy)propyl]piperidine, a new non imidazole histamine H3 receptor antagonist to bovine serum albumin. Acta Poloniae Pharmaceutica, 2012, 69, 1043-7.	0.3	4
194	The study of cellular cytotoxicity of argireline - an anti-aging peptide. Acta Biochimica Polonica, 2014, 61, 29-32.	0.3	4
195	Reaction of 5,5-diphenyl-2-thiohydantoin with ethyl chloroacetate: Synthesis and crystal and molecular structure of 2,3,5,6-tetrahydroimidazo-[2,1-b]-thiazol-3,6-dione. Journal of Crystallographic and Spectroscopic Research, 1988, 18, 563-573.	0.3	3
196	Biotransformation of new racemic (R,S)-5-benzylhydantoin derivatives by D-hydantoinases from adzuki bean. Biocatalysis and Biotransformation, 2014, 32, 117-124.	1.1	3
197	Pharmacokinetics and tissue distribution of the new non-imidazole histamine H3 receptor antagonist 1-[3-(4-tert-butylphenoxy) propyl]piperidine in rats. Xenobiotica, 2015, 45, 912-920.	0.5	3
198	Aryl―and heteroarylâ€substituted phenylalanines as <scp>AMPA</scp> receptor ligands. Chemical Biology and Drug Design, 2017, 90, 1271-1281.	1.5	3

#	Article	IF	CITATIONS
199	In silico and in vitro studies on interaction of novel non-imidazole histamine H3R antagonists with CYP3A4. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127147.	1.0	3
200	Discovery of Potential, Dual-Active Histamine H3 Receptor Ligands with Combined Antioxidant Properties. Molecules, 2021, 26, 2300.	1.7	3
201	Biphenylalkoxyamine Derivatives–Histamine H3 Receptor Ligands with Butyrylcholinesterase Inhibitory Activity. Molecules, 2021, 26, 3580.	1.7	3
202	Synthesis and biological profiling of novel isocoumarin derivatives and related compounds. Journal of the Serbian Chemical Society, 2021, 86, 639-649.	0.4	3
203	Probing an Artificial Polypeptide Receptor Library Using a Series of Novel Histamine H3 Receptor Ligands. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 141-156.	0.6	3
204	Discovery of Novel Lead in the Group of N-substituted Piperazine Ether Derivatives with Potential Histamine H ₃ Receptor Activity. Medicinal Chemistry, 2014, 10, 588-599.	0.7	3
205	Histamine H3 Receptor Ligands—KSK-59 and KSK-73—Reduce Body Weight Gain in a Rat Model of Excessive Eating. Pharmaceuticals, 2021, 14, 1080.	1.7	3
206	Activity of fourteen new hydantoin compounds on the human ABCB1 efflux pump. In Vivo, 2012, 26, 293-7.	0.6	3
207	KSK-74: Dual Histamine H3 and Sigma-2 Receptor Ligand with Anti-Obesity Potential. International Journal of Molecular Sciences, 2022, 23, 7011.	1.8	3
208	The Stereoselectivity and Hydrolysis Efficiency of Recombinant d-Hydantoinase from Vigna angularis Against 5-Benzylhydantoin Derivatives with Halogen and Methyl Substituents. Applied Biochemistry and Biotechnology, 2015, 175, 698-704.	1.4	2
209	Design, synthesis and structure–activity relationships of novel phenylalanine-based amino acids as kainate receptors ligands. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5568-5572.	1.0	2
210	Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam. Applied Surface Science, 2017, 417, 143-148.	3.1	2
211	Ameliorating effects of histamine H3 receptor antagonist E177 on acute pentylenetetrazole-induced memory impairments in rats. Behavioural Brain Research, 2021, 405, 113193.	1.2	2
212	In Vitro Effects of Bromoalkyl Phenytoin Derivatives on Regulated Death, Cell Cycle and Ultrastructure of Leukemia Cells. Anticancer Research, 2017, 37, 6373-6380.	0.5	2
213	Development of novel cellular model for affinity studies of histamine H(4) receptor ligands. Acta Biochimica Polonica, 2013, 60, 823-7.	0.3	2
214	Predictive 3Dâ€Quantitative Structureâ€Activity Relationship for A ₁ and A _{2A} Adenosine Receptor Ligands. QSAR and Combinatorial Science, 2009, 28, 1442-1454.	1.5	1
215	Influence of the Novel Histamine H3 Receptor Antagonist/Inverse Agonist M39 on Gastroprotection and PGE2 Production Induced by (R)-Alpha-Methylhistamine in C57BL/6 Mice. Frontiers in Pharmacology, 2019, 10, 966.	1.6	1
216	Synthesis and Spectroscopic Properties of Fused 5-Arylidene-2-Thiohydantoin Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 75, 235-248.	0.8	0

#	Article	IF	CITATIONS
217	Synthesis, Structure and Antiarrhythmic Properties Evaluation of New Basic Derivatives of 5,5-Diphenylhydantoin. ChemInform, 2003, 34, no.	0.1	0
218	Imidazo[2,1-b]thiazepines: Synthesis, Structure and Evaluation of Benzodiazepine Receptor Binding ChemInform, 2004, 35, no.	0.1	0
219	Four- and five-coordinate copper(II) complexes withN-(4,4-diphenyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)glycine. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, m79-m82.	0.4	0
220	Convenient way of synthesis and crystal structure of 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine, a histamine H4 receptor antagonist. Heterocyclic Communications, 2011, 17, .	0.6	0
221	Techniques Used in Pharmacological Evaluation of Histamine H4 Receptor Function on Native Human Eosinophils. Methods in Pharmacology and Toxicology, 2017, , 209-232.	0.1	0
222	A Taxicab geometry quantification system to evaluate the performance of in silico methods: a case study on adenosine receptors ligands. Journal of Computer-Aided Molecular Design, 2020, 34, 697-707.	1.3	0
223	Imidazoquinazolinodiones — New Results. Heterocycles, 1999, 51, 1597.	0.4	0
224	Title is missing!. , 2020, 15, e0229806.		0
225	Title is missing!. , 2020, 15, e0229806.		0
226	Title is missing!. , 2020, 15, e0229806.		0
227	Title is missing!. , 2020, 15, e0229806.		0
228	Structure Prediction, Evaluation, and Validation of GPR18 Lipid Receptor Using Free Programs. International Journal of Molecular Sciences, 2022, 23, 7917.	1.8	0