Zhenming Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5627232/publications.pdf

Version: 2024-02-01

361045 360668 1,424 36 20 35 citations h-index g-index papers 37 37 37 774 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cement and Concrete Research, 2020, 132, 106040.	4.6	141
2	Chemical deformation of metakaolin based geopolymer. Cement and Concrete Research, 2019, 120, 108-118.	4.6	135
3	Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes. Cement and Concrete Research, 2020, 135, 106107.	4.6	124
4	Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin. Cement and Concrete Research, 2019, 122, 30-41.	4.6	100
5	Effect of curing conditions on the pore solution and carbonation resistance of alkali-activated fly ash and slag pastes. Cement and Concrete Research, 2019, 116, 146-158.	4.6	90
6	Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content. Materials, 2018, 11, 2121.	1.3	89
7	Effect of different grade levels of calcined clays on fresh and hardened properties of ternary-blended cementitious materials for 3D printing. Cement and Concrete Composites, 2020, 114, 103708.	4.6	81
8	Fracture properties and microstructure formation of hardened alkali-activated slag/fly ash pastes. Cement and Concrete Research, 2021, 144, 106447.	4.6	76
9	Internal curing by superabsorbent polymers in alkali-activated slag. Cement and Concrete Research, 2020, 135, 106123.	4.6	71
10	Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing: A Fundamental Study of Extrudability and Early-Age Strength Development. Applied Sciences (Switzerland), 2019, 9, 1809.	1.3	69
11	Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage. Cement and Concrete Composites, 2020, 114, 103767.	4.6	48
12	Prediction of the autogenous shrinkage and microcracking of alkali-activated slag and fly ash concrete. Cement and Concrete Composites, 2021, 117, 103913.	4.6	45
13	Internal curing of alkali-activated slag-fly ash paste with superabsorbent polymers. Construction and Building Materials, 2020, 263, 120985.	3.2	36
14	Experimental comparisons between one-part and normal (two-part) alkali-activated slag binders. Construction and Building Materials, 2021, 309, 125177.	3.2	36
15	Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA. Engineering Structures, 2020, 209, 109980.	2.6	27
16	Effect of metakaolin on the autogenous shrinkage of alkali-activated slag-fly ash paste. Construction and Building Materials, 2021, 278, 122397.	3.2	27
17	Effect of Supplementary Materials on the Autogenous Shrinkage of Cement Paste. Materials, 2020, 13, 3367.	1.3	26
18	Investigation of the hydration properties of cement with EDTA by alternative current impedance spectroscopy. Cement and Concrete Composites, 2022, 126, 104365.	4.6	26

#	Article	IF	Citations
19	A comparative study on the mechanical properties, autogenous shrinkage and cracking proneness of alkali-activated concrete and ordinary Portland cement concrete. Construction and Building Materials, 2021, 292, 123418.	3.2	25
20	Modelling of autogenous shrinkage of hardening cement paste. Construction and Building Materials, 2020, 264, 120708.	3.2	20
21	Restraining effect of aggregates on autogenous shrinkage in cement mortar and concrete. Construction and Building Materials, 2021, 289, 123166.	3.2	19
22	Effect of superabsorbent polymer introduction on properties of alkali-activated slag mortar. Construction and Building Materials, 2022, 340, 127541.	3.2	16
23	Early-age properties of alkali-activated slag and glass wool paste. Construction and Building Materials, 2021, 291, 123326.	3.2	14
24	Understanding the effect of nano/micro-structures on anti-impact of nano-boron nitride filled cementitious composites. Construction and Building Materials, 2021, 298, 123885.	3.2	14
25	Characterization of one-part alkali-activated slag with rice straw ash. Construction and Building Materials, 2022, 345, 128403.	3.2	10
26	A molecular dynamics study of N–A–S–H gel with various Si/Al ratios. Journal of the American Ceramic Society, 2022, 105, 6462-6474.	1.9	9
27	Stress evolution in restrained GGBFS concrete due to autogenous deformation: bayesian optimization of aging creep. Construction and Building Materials, 2022, 324, 126690.	3.2	8
28	A Low-Autogenous-Shrinkage Alkali-Activated Slag and Fly Ash Concrete. Applied Sciences (Switzerland), 2020, 10, 6092.	1.3	7
29	Impressed current cathodic protection of chloride-contaminated RC structures with cracking: A numerical study. Journal of Building Engineering, 2021, 44, 102943.	1.6	7
30	Effect of natural carbonation on chloride binding behaviours in OPC paste investigated by a thermodynamic model. Journal of Building Engineering, 2022, 49, 104021.	1.6	6
31	Thermal deformation and stress of alkali-activated slag concrete under semi-adiabatic condition: Experiments and simulations. Cement and Concrete Research, 2022, 159, 106887.	4.6	6
32	Influence of liquid-binder ratio on the performance of alkali-activated slag mortar with superabsorbent polymer. Journal of Building Engineering, 2022, 48, 103934.	1.6	5
33	Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite. Environmental Technology (United Kingdom), 2022, 43, 4306-4314.	1.2	3
34	Improve the long-term property of heat-cured mortars blended with fly ash by internal curing. Journal of Building Engineering, 2022, 54, 104624.	1.6	3
35	A comparison between alkaliâ€activated slag/fly ash binders prepared with natural seawater and deionized water. Journal of the American Ceramic Society, 0, , .	1.9	3
36	Nondestructive Monitoring Hydration of Belite Calcium Sulfoaluminate Cement by EIS Measurement. Materials, 2022, 15, 4433.	1.3	2