JÃ¹/₄rgen A Knoblich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5626657/publications.pdf

Version: 2024-02-01

141 papers

29,389 citations

9264 74 h-index 136 g-index

163 all docs

 $\begin{array}{c} 163 \\ \text{docs citations} \end{array}$

163 times ranked 25151 citing authors

#	Article	IF	CITATIONS
1	Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science, 2022, 375, eabf5546.	12.6	61
2	Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death and Differentiation, 2021, 28, 52-67.	11.2	104
3	ISSCR guidelines for the transfer of human pluripotent stem cells and their direct derivatives into animal hosts. Stem Cell Reports, 2021, 16, 1409-1415.	4.8	20
4	Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell, 2021, 28, 1362-1379.e7.	11.1	67
5	The Organoid Cell Atlas. Nature Biotechnology, 2021, 39, 13-17.	17.5	96
6	Neurotransmitter signaling regulates distinct phases of multimodal human interneuron migration. EMBO Journal, 2021, 40, e108714.	7.8	16
7	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
8	A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science, 2020, 370, 935-941.	12.6	101
9	Reflections on the past two decades of neuroscience. Nature Reviews Neuroscience, 2020, 21, 524-534.	10.2	35
10	Oxidative Metabolism Drives Immortalization of Neural Stem Cells during Tumorigenesis. Cell, 2020, 182, 1490-1507.e19.	28.9	100
11	Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21, 571-584.	37.0	1,082
12	Prospero Phase-Separating the Way to Neuronal Differentiation. Developmental Cell, 2020, 52, 251-252.	7.0	1
13	DigiTAG–a RNA Sequencing Approach to Analyze Transcriptomes of Rare Cell Populations in Drosophila melanogaster. Bio-protocol, 2020, 10, e3809.	0.4	O
14	The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. ELife, 2019, 8, .	6.0	32
15	Broad applicability of a streamlined Ethyl Cinnamate-based clearing procedure. Development (Cambridge), 2019, 146, .	2.5	92
16	Human organoids: a new dimension in cell biology. Molecular Biology of the Cell, 2019, 30, 1129-1137.	2.1	83
17	Dynamics of activating and repressive histone modifications in <i>Drosophila</i> neural stem cell lineages and brain tumors. Development (Cambridge), 2019, 146, .	2.5	7
18	Human blood vessel organoids as aÂmodel ofÂdiabetic vasculopathy. Nature, 2019, 565, 505-510.	27.8	500

#	Article	IF	CITATIONS
19	Coordinated Control of mRNA and rRNA Processing Controls Embryonic Stem Cell Pluripotency and Differentiation. Cell Stem Cell, 2018, 22, 543-558.e12.	11.1	55
20	Tracing Stem Cell Division in Adult Neurogenesis. Cell Stem Cell, 2018, 22, 143-145.	11.1	3
21	The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Reports, 2018, 19, 102-117.	4.5	41
22	A48â€Expanded HTT cag repeats disrupt the balance between neural progenitor expansion and differentiation in isogenic human cerebral organoids. , 2018, , .		0
23	Time-resolved transcriptomics in neural stem cells identifies a v-ATPase/Notch regulatory loop. Journal of Cell Biology, 2018, 217, 3285-3300.	5 . 2	26
24	Genetically engineered cerebral organoids model brain tumor formation. Nature Methods, 2018, 15, 631-639.	19.0	286
25	The asymmetrically segregating lncRNA cherub is required for transforming stem cells into malignant cells. ELife, $2018, 7, .$	6.0	28
26	Human tissues in a dish: The research and ethical implications of organoid technology. Science, 2017, 355, .	12.6	202
27	Time-Specific Effects of Spindle Positioning on Embryonic Progenitor Pool Composition and Adult Neural Stem Cell Seeding. Neuron, 2017, 93, 777-791.e3.	8.1	36
28	Selfâ€organized developmental patterning and differentiation in cerebral organoids. EMBO Journal, 2017, 36, 1316-1329.	7.8	300
29	Fused cerebral organoids model interactions between brain regions. Nature Methods, 2017, 14, 743-751.	19.0	574
30	Guided self-organization and cortical plate formation in human brain organoids. Nature Biotechnology, 2017, 35, 659-666.	17.5	606
31	The hope and the hype of organoid research. Development (Cambridge), 2017, 144, 938-941.	2.5	303
32	Induction of Expansion and Folding in Human Cerebral Organoids. Cell Stem Cell, 2017, 20, 385-396.e3.	11.1	346
33	Modeling Human Brain Development And Disease In Stem Cell Derived 3D Organoid Culture. European Neuropsychopharmacology, 2017, 27, S358.	0.7	0
34	The splicing co-factor Barricade/Tat-SF1, is required for cell cycle and lineage progression in <i>Drosophila</i> neural stem cells. Development (Cambridge), 2017, 144, 3932-3945.	2.5	14
35	Micro <scp>RNA</scp> â€34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO Journal, 2016, 35, 2386-2398.	7.8	53
36	A Combination of CRISPR/Cas9 and Standardized RNAi as a Versatile Platform for the Characterization of Gene Function. G3: Genes, Genomes, Genetics, 2016, 6, 2467-2478.	1.8	16

#	Article	IF	CITATIONS
37	Lab-Built Brains. Scientific American, 2016, 316, 26-31.	1.0	2
38	Cerebral Organoids Recapitulate Epigenomic Signatures of the Human Fetal Brain. Cell Reports, 2016, 17, 3369-3384.	6.4	296
39	You Are What You Eat: Linking Metabolic Asymmetry and Cell Fate Choice. Developmental Cell, 2016, 37, 206-208.	7.0	0
40	Mammary Stem Cell Self-Renewal Is Regulated by Slit2/Robo1 Signaling through SNAI1 and mINSC. Cell Reports, 2015, 13, 290-301.	6.4	54
41	Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15672-15677.	7.1	870
42	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	12.6	254
43	Proliferation control in neural stem and progenitor cells. Nature Reviews Neuroscience, 2015, 16, 647-659.	10.2	318
44	A Regulatory Transcriptional Loop Controls Proliferation and Differentiation in Drosophila Neural Stem Cells. PLoS ONE, 2014, 9, e97034.	2.5	7
45	Analysis and modeling of mitotic spindle orientations in three dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1014-1019.	7.1	33
46	SWI/SNF Complex Prevents Lineage Reversion and Induces Temporal Patterning in Neural Stem Cells. Cell, 2014, 156, 1259-1273.	28.9	137
47	Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 2014, 9, 2329-2340.	12.0	1,189
48	A single allele of <i>Hdac2</i> but not <i>Hdac1</i> is sufficient for normal mouse brain development in the absence of its paralog. Development (Cambridge), 2014, 141, 604-616.	2.5	70
49	The TRIM-NHL Protein Brat Promotes Axon Maintenance by Repressing <i>src64B</i> Expression. Journal of Neuroscience, 2014, 34, 13855-13864.	3.6	13
50	The Conserved Discs-large Binding Partner Banderuola Regulates Asymmetric Cell Division in Drosophila. Current Biology, 2014, 24, 1811-1825.	3.9	14
51	Par3–mInsc and Gαi3 cooperate to promote oriented epidermal cell divisions through LGN. Nature Cell Biology, 2014, 16, 758-769.	10.3	123
52	Ecdysone and Mediator Change Energy Metabolism to Terminate Proliferation in Drosophila Neural Stem Cells. Cell, 2014, 158, 874-888.	28.9	190
53	Dachsous-Dependent Asymmetric Localization of Spiny-Legs Determines Planar Cell Polarity Orientation in Drosophila. Cell Reports, 2014, 8, 610-621.	6.4	58
54	Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 2014, 345, 1247125.	12.6	1,937

#	Article	IF	Citations
55	Cerebral organoids model human brain development and microcephaly. Nature, 2013, 501, 373-379.	27.8	3,889
56	The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex. Neuron, 2013, 79, 254-265.	8.1	65
57	Identification of transcription factor binding sites from ChIP-seq data at high resolution. Bioinformatics, 2013, 29, 2705-2713.	4.1	58
58	Asymmetric cell division and spindle orientation in neural stem cells - from drosophila to humans. Experimental Hematology, 2013, 41, S4.	0.4	1
59	Cell Biology: Notch Recycling Is Numbed. Current Biology, 2013, 23, R270-R272.	3.9	6
60	FACS purification of Drosophila larval neuroblasts for next-generation sequencing. Nature Protocols, 2013, 8, 1088-1099.	12.0	57
61	The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO Journal, 2013, 32, 1598-1612.	7.8	80
62	Transcriptome and proteome quantification of a tumor model provides novel insights into postâ€transcriptional gene regulation. Genome Biology, 2013, 14, r133.	9.6	40
63	Long-Term Live Cell Imaging and Automated 4D Analysis of Drosophila Neuroblast Lineages. PLoS ONE, 2013, 8, e79588.	2.5	62
64	<i>Drosophila</i> neuroblasts: a model for stem cell biology. Development (Cambridge), 2012, 139, 4297-4310.	2.5	388
65	FACS Purification and Transcriptome Analysis of Drosophila Neural Stem Cells Reveals a Role for Klumpfuss in Self-Renewal. Cell Reports, 2012, 2, 407-418.	6.4	122
66	Spindle orientation in mammalian cerebral cortical development. Current Opinion in Neurobiology, 2012, 22, 737-746.	4.2	140
67	The Par Complex and Integrins Direct Asymmetric Cell Division in Adult Intestinal Stem Cells. Cell Stem Cell, 2012, 11, 529-540.	11.1	165
68	The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nature Cell Biology, 2011, 13, 1029-1039.	10.3	58
69	Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi. Cell Stem Cell, 2011, 8, 580-593.	11.1	230
70	Mouse Inscuteable Induces Apical-Basal Spindle Orientation to Facilitate Intermediate Progenitor Generation in the Developing Neocortex. Neuron, 2011, 72, 269-284.	8.1	149
71	The E3â€ubiquitin ligase TRIM2 regulates neuronal polarization. Journal of Neurochemistry, 2011, 117, 29-37.	3.9	43
72	Asymmetric cell division: recent developments and their implications for tumour biology. Nature Reviews Molecular Cell Biology, 2010, $11,849-860$.	37.0	524

#	Article	IF	CITATIONS
73	Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes and Development, 2009, 23, 2675-2699.	5.9	348
74	Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature, 2009, 458, 1051-1055.	27.8	179
75	Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature, 2009, 458, 987-992.	27.8	283
76	Wicked views on stem cell news. Nature Cell Biology, 2009, 11, 678-679.	10.3	5
77	The TRIM-NHL Protein TRIM32 Activates MicroRNAs and Prevents Self-Renewal in Mouse Neural Progenitors. Cell, 2009, 136, 913-925.	28.9	372
78	Fly Stem Cell Research Gets Infectious. Cell, 2009, 137, 1185-1187.	28.9	3
79	Mechanisms of Asymmetric Stem Cell Division. Cell, 2008, 132, 583-597.	28.9	874
80	Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature, 2008, 454, 241-245.	27.8	222
81	Cell division, growth and death. Current Opinion in Cell Biology, 2008, 20, 647-649.	5.4	1
82	The PDZ Protein Canoe Regulates the Asymmetric Division of Drosophila Neuroblasts and Muscle Progenitors. Current Biology, 2008, 18, 831-837.	3.9	80
83	LIS1 and Spindle Orientation in Neuroepithelial Cells. Cell Stem Cell, 2008, 2, 193-194.	11.1	9
84	Linking Cell Cycle to Asymmetric Division: Aurora-A Phosphorylates the Par Complex to Regulate Numb Localization. Cell, 2008, 135, 161-173.	28.9	331
85	The Tumor Suppressors Brat and Numb Regulate Transit-Amplifying Neuroblast Lineages in Drosophila. Developmental Cell, 2008, 14, 535-546.	7.0	390
86	Experimental testing of predicted myristoylation targets involved in asymmetric cell division and calcium-dependent signalling. Cell Cycle, 2008, 7, 3709-3719.	2.6	65
87	Purification of Drosophila Protein Complexes for Mass Spectrometry. Methods in Molecular Biology, 2008, 420, 347-358.	0.9	0
88	On the backroads to cellular asymmetry. Development (Cambridge), 2007, 134, 4311-4313.	2.5	0
89	CELL BIOLOGY: Sara Splits the Signal. Science, 2006, 314, 1094-1096.	12.6	5
90	Asymmetric Segregation of the Tumor Suppressor Brat Regulates Self-Renewal in Drosophila Neural Stem Cells. Cell, 2006, 124, 1241-1253.	28.9	473

#	Article	IF	CITATIONS
91	The Drosophila NuMA Homolog Mud Regulates Spindle Orientation in Asymmetric Cell Division. Developmental Cell, 2006, 10, 731-742.	7.0	268
92	Mitotic Activation of the Kinase Aurora-A Requires Its Binding Partner Bora. Developmental Cell, 2006, 11, 147-157.	7.0	151
93	The Conserved C2 Domain Protein Lethal (2) Giant Discs Regulates Protein Trafficking in Drosophila. Developmental Cell, 2006, 11, 641-653.	7.0	96
94	The adaptor protein $X11L\hat{l}\pm/D$ mint1 interacts with the PDZ-binding domain of the cell recognition protein Rst in Drosophila. Developmental Biology, 2006, 289, 296-307.	2.0	21
95	Endosome dynamics during development. Current Opinion in Cell Biology, 2006, 18, 407-415.	5.4	50
96	Lethal giant larvae take on a life of their own. Trends in Cell Biology, 2006, 16, 234-241.	7.9	56
97	Pins for spines. Nature Cell Biology, 2005, 7, 1157-1158.	10.3	4
98	Drosophila Ric-8 is essential for plasma-membrane localization of heterotrimeric G proteins. Nature Cell Biology, 2005, 7, 1099-1105.	10.3	118
99	Numb and αâ€Adaptin regulate Sanpodo endocytosis to specify cell fate in <i>Drosophila</i> external sensory organs. EMBO Reports, 2005, 6, 836-842.	4.5	120
100	Getting axons going. Nature, 2005, 436, 632-633.	27.8	2
100	Getting axons going. Nature, 2005, 436, 632-633. Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae. Current Biology, 2005, 15, 276-282.	27.8 3.9	2 148
	Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae.		
101	Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae. Current Biology, 2005, 15, 276-282. Localization-Dependent and -Independent Roles of Numb Contribute to Cell-Fate Specification in	3.9	148
101	Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae. Current Biology, 2005, 15, 276-282. Localization-Dependent and -Independent Roles of Numb Contribute to Cell-Fate Specification in Drosophila. Current Biology, 2005, 15, 1583-1590. Quantitative Analysis of Protein Dynamics during Asymmetric Cell Division. Current Biology, 2005, 15,	3.9 3.9	148
101 102 103	Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae. Current Biology, 2005, 15, 276-282. Localization-Dependent and -Independent Roles of Numb Contribute to Cell-Fate Specification in Drosophila. Current Biology, 2005, 15, 1583-1590. Quantitative Analysis of Protein Dynamics during Asymmetric Cell Division. Current Biology, 2005, 15, 1847-1854.	3.9 3.9 3.9	148 28 56
101 102 103	Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae. Current Biology, 2005, 15, 276-282. Localization-Dependent and -Independent Roles of Numb Contribute to Cell-Fate Specification in Drosophila. Current Biology, 2005, 15, 1583-1590. Quantitative Analysis of Protein Dynamics during Asymmetric Cell Division. Current Biology, 2005, 15, 1847-1854. Pins for spines. Nature Cell Biology, 2005, 7, 1057-1058. Asymmetric Rab11 Endosomes Regulate Delta Recycling and Specify Cell Fate in the Drosophila Nervous	3.9 3.9 3.9	148 28 56 372
101 102 103 104	Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae. Current Biology, 2005, 15, 276-282. Localization-Dependent and -Independent Roles of Numb Contribute to Cell-Fate Specification in Drosophila. Current Biology, 2005, 15, 1583-1590. Quantitative Analysis of Protein Dynamics during Asymmetric Cell Division. Current Biology, 2005, 15, 1847-1854. Pins for spines. Nature Cell Biology, 2005, 7, 1057-1058. Asymmetric Rab11 Endosomes Regulate Delta Recycling and Specify Cell Fate in the Drosophila Nervous System. Cell, 2005, 122, 763-773. Fragile X Protein Functions with Lgl and the PAR Complex in Flies and Mice. Developmental Cell, 2005,	3.9 3.9 3.9 10.3	148 28 56 372 274

#	Article	IF	Citations
109	Dare to Be Different: Asymmetric Cell Division in Drosophila, C. elegans and Vertebrates. Current Biology, 2004, 14, R674-R685.	3.9	398
110	Heterotrimeric G Proteins. Cell, 2004, 119, 453-456.	28.9	69
111	Sequential Roles of Cdc42, Par-6, aPKC, and Lgl in the Establishment of Epithelial Polarity during Drosophila Embryogenesis. Developmental Cell, 2004, 6, 845-854.	7.0	307
112	Shortstop Recruits EB1/APC1 and Promotes Microtubule Assembly at the Muscle-Tendon Junction. Current Biology, 2003, 13, 1086-1095.	3.9	104
113	The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature, 2003, 422, 326-330.	27.8	509
114	Interaction of Activator of G-protein Signaling 3 (AGS3) with LKB1, a Serine/Threonine Kinase Involved in Cell Polarity and Cell Cycle Progression. Journal of Biological Chemistry, 2003, 278, 23217-23220.	3.4	57
115	Genetic Analysis of Heterotrimeric G-Protein Function. , 2003, , 571-573.		0
116	Dcas Is Required for importin-α3 Nuclear Export and Mechano-Sensory Organ Cell Fate Specification in Drosophila. Developmental Biology, 2002, 244, 396-406.	2.0	33
117	The Endocytic Protein α-Adaptin Is Required for Numb-Mediated Asymmetric Cell Division in Drosophila. Developmental Cell, 2002, 3, 221-231.	7.0	340
118	Drosophila Aurora-A Is Required for Centrosome Maturation and Actin-Dependent Asymmetric Protein Localization during Mitosis. Current Biology, 2002, 12, 640-647.	3.9	243
119	Protein Localization during Asymmetric Cell Division. Experimental Cell Research, 2001, 271, 66-74.	2.6	19
120	Heterotrimeric G Proteins Direct Two Modes of Asymmetric Cell Division in the Drosophila Nervous System. Cell, 2001, 107, 183-194.	28.9	291
121	Asymmetric cell division during animal development. Nature Reviews Molecular Cell Biology, 2001, 2, 11-20.	37.0	274
122	DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biology, 2001, 3, 43-49.	10.3	377
123	Bazooka and PAR-6 are required with PAR-1 for the maintenance of oocyte fate in Drosophila. Current Biology, 2001, 11, 901-906.	3.9	88
124	Inscuteable-dependent apical localization of the microtubule-binding protein Cornetto suggests a role in asymmetric cell division. Journal of Cell Science, 2001, 114, 3655-3662.	2.0	11
125	A protein complex containing Inscuteable and the Gî±-binding protein Pins orients asymmetric cell divisions in Drosophila. Current Biology, 2000, 10, 353-362.	3.9	312
126	Epithelial polarity: The ins and outs of the fly epidermis. Current Biology, 2000, 10, R791-R794.	3.9	16

#	Article	IF	CITATIONS
127	Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature, 1999, 402, 548-551.	27.8	347
128	Deletion analysis of the Drosophila Inscuteable protein reveals domains for cortical localization and asymmetric localization. Current Biology, 1999, 9, 155-158.	3.9	51
129	<i>Drosophila</i> Cyclin B3 is required for female fertility and is dispensable for mitosis like Cyclin B. Genes and Development, 1998, 12, 3741-3751.	5.9	176
130	Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in <i>Drosophila</i> . Genes and Development, 1998, 12, 1837-1846.	5.9	127
131	Mechanisms of asymmetric cell division during animal development. Current Opinion in Cell Biology, 1997, 9, 833-841.	5.4	85
132	The N terminus of the Drosophila Numb protein directs membrane association and actin-dependent asymmetric localization. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13005-13010.	7.1	94
133	The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11925-11932.	7.1	285
134	Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature, 1996, 383, 50-55.	27.8	375
135	Asymmetric segregation of Numb and Prospero during cell division. Nature, 1995, 377, 624-627.	27.8	473
136	Distinct modes of cyclin E/cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila embryogenesis Genes and Development, 1995, 9, 1327-1339.	5.9	217
137	Spindle orientation and asymmetric cell fate. Cell, 1995, 82, 523-526.	28.9	76
138	Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell, 1994, 77, 107-120.	28.9	545
139	Synergistic action of Drosophila cyclins A and B during the G2-M transition EMBO Journal, 1993, 12, 65-74.	7.8	199
140	Cyclins and <i>Cdc2</i> Kinases in <i>Drosophila</i> : Genetic Analyses in a Higher Eukaryote. Novartis Foundation Symposium, 1992, 170, 97-114.	1.1	1
141	Genetic engineering to initiate tumorigenesis in cerebral organoids. Protocol Exchange, 0, , .	0.3	1