Carol A Feghali-Bostwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5626348/publications.pdf

Version: 2024-02-01

104 papers

5,839 citations

38 h-index 79644 73 g-index

104 all docs

104 docs citations

104 times ranked 8164 citing authors

#	Article	IF	CITATIONS
1	Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Annals of the Rheumatic Diseases, 2022, 81, 268-277.	0.5	19
2	Clinical and translational research workforce education survey identifies needs of faculty and staff. Journal of Clinical and Translational Science, 2022, 6, e8.	0.3	4
3	Impact of Sex and Gender on Autoimmune Lung Disease: Opportunities for Future Research: NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 817-823.	2.5	3
4	The translational sciences clinic: From bench to bedside. Journal of Clinical and Translational Science, 2021, 5, e36.	0.3	1
5	Lysyl oxidase directly contributes to extracellular matrix production and fibrosis in systemic sclerosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L29-L40.	1.3	33
6	Elucidating the cellular mechanism for E2-induced dermal fibrosis. Arthritis Research and Therapy, 2021, 23, 68.	1.6	7
7	Systemic sclerosis biomarkers detection in the secretome of TGFÎ ² 1-activated primary human lung fibroblasts. Journal of Proteomics, 2021, 242, 104243.	1.2	3
8	Announcing the Editorial Board Fellowship Program of the American Journal of Physiology-Lung Cellular and Molecular Physiology. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L116-L118.	1.3	1
9	Elevated Fibronectin Levels in Profibrotic CD14+ Monocytes and CD14+ Macrophages in Systemic Sclerosis. Frontiers in Immunology, 2021, 12, 642891.	2.2	20
10	Promoting our early career members at AJP-Lung: The Editorial Board Fellowship Program and the Next Generation Physiologist Highlights section at our Journal. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L844-L846.	1.3	1
11	Exercise as a multi-modal disease-modifying medicine in systemic sclerosis: An introduction by The Global Fellowship on Rehabilitation and Exercise in Systemic Sclerosis (G-FoRSS). Best Practice and Research in Clinical Rheumatology, 2021, 35, 101695.	1.4	19
12	Differential DNA Methylation Landscape in Skin Fibroblasts from African Americans with Systemic Sclerosis. Genes, 2021, 12, 129.	1.0	12
13	Phenotypic Characterization of Transgenic Mice Expressing Human IGFBP-5. International Journal of Molecular Sciences, 2021, 22, 335.	1.8	7
14	Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. International Journal of Molecular Sciences, 2021, 22, 12609.	1.8	5
15	PDGF Promotes Dermal Fibroblast Activation via a Novel Mechanism Mediated by Signaling Through MCHR1. Frontiers in Immunology, 2021, 12, 745308.	2.2	11
16	E4 engages uPAR and enolase-1 and activates urokinase to exert antifibrotic effects. JCI Insight, 2021, 6, .	2.3	12
17	Cross-Talk between Transforming Growth Factor- \hat{l}^2 and Periostin Can Be Targeted for Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 204-216.	1.4	38
18	Extracellular matrix alterations in lowâ€grade lung adenocarcinoma compared with normal lung tissue by imaging mass spectrometry. Journal of Mass Spectrometry, 2020, 55, e4450.	0.7	23

#	Article	IF	Citations
19	Pulmonary fibrosis: something old, something new… still waiting for a breakthrough. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L560-L561.	1.3	4
20	TL1A Promotes Lung Tissue Fibrosis and Airway Remodeling. Journal of Immunology, 2020, 205, 2414-2422.	0.4	13
21	Oxetanyl Sulfoxide MMS-350 Ameliorates Pulmonary Fibrosis <i>In Vitro</i> , <i>In Vivo</i> , and <i>Ex Vivo</i> . ACS Medicinal Chemistry Letters, 2020, 11, 2312-2317.	1.3	3
22	Prominence of IL6, IGF, TLR, and Bioenergetics Pathway Perturbation in Lung Tissues of Scleroderma Patients With Pulmonary Fibrosis. Frontiers in Immunology, 2020, 11, 383.	2.2	40
23	Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH. Annals of the Rheumatic Diseases, 2020, 79, 507-517.	0.5	60
24	Periostin plays a critical role in the cell cycle in lung fibroblasts. Respiratory Research, 2020, 21, 38.	1.4	26
25	CD70 Activation Decreases Pulmonary Fibroblast Production of Extracellular Matrix Proteins. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 255-265.	1.4	3
26	Long noncoding RNA H19X is a key mediator of TGF- $\hat{l}^2\hat{a}$ \in "driven fibrosis. Journal of Clinical Investigation, 2020, 130, 4888-4905.	3.9	52
27	Using a Social Ecological Model Framework for Advancing the Careers of Women in Science in Academic Medical Centers. ADVANCE Journal, 2020, 1, .	0.3	О
28	Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index. PLoS ONE, 2020, 15, e0240986.	1.1	О
29	Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Science Advances, 2019, 5, eaav3270.	4.7	42
30	3420 Estradiol levels are elevated in older men with diffuse cutaneous SSc and are associated with decreased survival. Journal of Clinical and Translational Science, 2019, 3, 104-105.	0.3	0
31	A team-based translational journal club: Understanding the translational research highway. Journal of Clinical and Translational Science, 2019, 3, 291-294.	0.3	3
32	A Human Skin Model Recapitulates Systemic Sclerosis Dermal Fibrosis and Identifies COL22A1 as a TGF \hat{l}^2 Early Response Gene that Mediates Fibroblast to Myofibroblast Transition. Genes, 2019, 10, 75.	1.0	18
33	Fos-related antigen-1 transgenic mouse as a model for systemic sclerosis: A potential role of M2 polarization. Journal of Scleroderma and Related Disorders, 2019, 4, 137-148.	1.0	O
34	Induction of a Th17 Phenotype in Human Skinâ€"A Mimic of Dermal Inflammatory Diseases. Methods and Protocols, 2019, 2, 45.	0.9	4
35	Role of phospholipase D in bleomycin-induced mitochondrial reactive oxygen species generation, mitochondrial DNA damage, and pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L175-L187.	1.3	29
36	Long intergenic non-coding RNAs regulate human lung fibroblast function: Implications for idiopathic pulmonary fibrosis. Scientific Reports, 2019, 9, 6020.	1.6	25

#	Article	IF	Citations
37	Estradiol levels are elevated in older men with diffuse cutaneous SSc and are associated with decreased survival. Arthritis Research and Therapy, 2019, 21, 85.	1.6	16
38	NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L644-L655.	1.3	10
39	Integrative analysis of DNA methylation in discordant twins unveils distinct architectures of systemic sclerosis subsets. Clinical Epigenetics, 2019, 11, 58.	1.8	32
40	Insulin-like growth factor binding protein-4 exerts antifibrotic activity by reducing levels of connective tissue growth factor and the C-X-C chemokine receptor 4. FASEB BioAdvances, 2019, 1, 167-179.	1.3	28
41	OP0185â€INFLAMMATION-DEPENDENT DECREASED EXPRESSION OF CD52 ON CIRCULATING CD14+ MONOCY FACILITATES ADHESION IN SYSTEMIC SCLEROSIS. , 2019, , .	TES	0
42	<p>Therapeutic Challenges And Advances In The Management Of Systemic Sclerosis-Related Pulmonary Arterial Hypertension (SSc-PAH)</p> . Therapeutics and Clinical Risk Management, 2019, Volume 15, 1427-1442.	0.9	10
43	Insulin-like growth factor (IGF)-II- mediated fibrosis in pathogenic lung conditions. PLoS ONE, 2019, 14, e0225422.	1.1	27
44	18F-AzaFol for Detection of Folate Receptor-β Positive Macrophages in Experimental Interstitial Lung Diseaseâ€"A Proof-of-Concept Study. Frontiers in Immunology, 2019, 10, 2724.	2.2	27
45	Visualisation of interstitial lung disease by molecular imaging of integrin $\hat{l}\pm v\hat{l}^23$ and somatostatin receptor 2. Annals of the Rheumatic Diseases, 2019, 78, 218-227.	0.5	24
46	Intracellular Heat Shock Protein 70 Deficiency in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 629-636.	1.4	26
47	Pro-fibrotic phenotype of human skin fibroblasts induced by periostin via modulating TGF- \hat{l}^2 signaling. Journal of Dermatological Science, 2018, 90, 199-208.	1.0	26
48	RNAi screening identifies a mechanosensitive ROCK-JAK2-STAT3 network central to myofibroblast activation. Journal of Cell Science, 2018, 131, .	1.2	37
49	2027 The role of lysyl oxidase in systemic sclerosis-associated lung fibrosis. Journal of Clinical and Translational Science, 2018, 2, 32-33.	0.3	0
50	Long Non-coding RNAs Are Central Regulators of the IL- $1\hat{1}^2$ -Induced Inflammatory Response in Normal and Idiopathic Pulmonary Lung Fibroblasts. Frontiers in Immunology, 2018, 9, 2906.	2.2	47
51	A Focused Career Development Program for Women Faculty at an Academic Medical Center. Journal of Women's Health, 2018, 27, 1474-1481.	1.5	7
52	Systems Analysis of Transcriptomic and Proteomic Profiles Identifies Novel Regulation of Fibrotic Programs by miRNAs in Pulmonary Fibrosis Fibroblasts. Genes, 2018, 9, 588.	1.0	39
53	IGFBP-5 Promotes Fibrosis via Increasing Its Own Expression and That of Other Pro-fibrotic Mediators. Frontiers in Endocrinology, 2018, 9, 601.	1.5	72
54	Characterization of human PDGFR- \hat{l}^2 -positive pericytes from IPF and non-IPF lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L991-L1002.	1.3	35

#	Article	IF	CITATIONS
55	Gender Disparities in Faculty Rank: Factors that Affect Advancement of Women Scientists at Academic Medical Centers. Social Sciences, 2018, 7, 62.	0.7	13
56	Personalized Gene Expression Profile Information Predicts Severity of Systemic Sclerosis Despite Heterogeneity of Disease. FASEB Journal, 2018, 32, 414.10.	0.2	0
57	Sirtuin 3 Deregulation Promotes Pulmonary Fibrosis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw151.	1.7	63
58	Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Research and Therapy, 2017, 19, 144.	1.6	106
59	Differences in Right Ventricular Functional Changes during Treatment between Systemic Sclerosis–associated Pulmonary Arterial Hypertension and Idiopathic Pulmonary Arterial Hypertension. Annals of the American Thoracic Society, 2017, 14, 682-689.	1.5	13
60	Lysocardiolipin acyltransferase regulates TGF- \hat{l}^2 mediated lung fibroblast differentiation. Free Radical Biology and Medicine, 2017, 112, 162-173.	1.3	28
61	Extracellular Mitochondrial DNA Is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1571-1581.	2.5	140
62	The role of microRNA-155/liver X receptor pathway in experimental and idiopathic pulmonary fibrosis. Journal of Allergy and Clinical Immunology, 2017, 139, 1946-1956.	1.5	51
63	Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis and Rheumatology, 2017, 69, 257-267.	2.9	62
64	The Mighty Fibroblast and Its Utility in Scleroderma Research. Journal of Scleroderma and Related Disorders, 2017, 2, 100-107.	1.0	57
65	Optimization of a murine and human tissue model to recapitulate dermal and pulmonary features of systemic sclerosis. PLoS ONE, 2017, 12, e0179917.	1.1	16
66	Reduced microRNA-503 expression augments lung fibroblast VEGF production in chronic obstructive pulmonary disease. PLoS ONE, 2017, 12, e0184039.	1.1	16
67	Gender differences in systemic sclerosis: relationship to clinical features, serologic status and outcomes. Journal of Scleroderma and Related Disorders, 2016, 1, 204-212.	1.0	73
68	Netrinâ€1 Regulates Fibrocyte Accumulation in the Decellularized Fibrotic Sclerodermatous Lung Microenvironment and in Bleomycinâ€Induced Pulmonary Fibrosis. Arthritis and Rheumatology, 2016, 68, 1251-1261.	2.9	51
69	miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Research and Therapy, 2016, 18, 155.	1.6	96
70	Endothelial Cells Expressing Endothelial and Mesenchymal Cell Gene Products in Lung Tissue From Patients With Systemic Sclerosis–Associated Interstitial Lung Disease. Arthritis and Rheumatology, 2016, 68, 210-217.	2.9	91
71	Tenascin-C drives persistence of organ fibrosis. Nature Communications, 2016, 7, 11703.	5.8	204
72	Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice. Journal of Biological Chemistry, 2016, 291, 8070-8089.	1.6	82

#	Article	IF	CITATIONS
73	Fibrogenic Lung Injury Induces Non–Cell-Autonomous Fibroblast Invasion. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 831-842.	1.4	27
74	Genetics of systemic sclerosis. Current Opinion in Rheumatology, 2015, 27, 521-529.	2.0	28
7 5	Anti-RNA Polymerase II Antibodies in a US Cohort of Systemic Sclerosis Patients: Comment on the Article by Hamaguchi et al. Arthritis and Rheumatology, 2015, 67, 2547-2548.	2.9	2
76	Induced pluripotent stem cells model personalized variations in liver disease resulting from α1â€antitrypsin deficiency. Hepatology, 2015, 62, 147-157.	3.6	77
77	An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model. International Immunopharmacology, 2015, 28, 1102-1105.	1.7	20
78	Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma: T-helper cell-associated cytokine profiles. Seminars in Arthritis and Rheumatism, 2015, 45, 284-293.	1.6	59
79	Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy. Thorax, 2015, 70, 1138-1148.	2.7	62
80	Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L344-L357.	1.3	570
81	IGFBP-5 Promotes Fibrosis Independently of Its Translocation to the Nucleus and Its Interaction with Nucleolin and IGF. PLoS ONE, 2015, 10, e0130546.	1.1	18
82	Fibroblasts that resist cigarette smoke-induced senescence acquire profibrotic phenotypes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L364-L373.	1.3	34
83	Fibroblasts in fibrosis: novel roles and mediators. Frontiers in Pharmacology, 2014, 5, 123.	1.6	730
84	Update on scleroderma-associated interstitial lung disease. Current Opinion in Rheumatology, 2014, 26, 630-636.	2.0	20
85	Editorial: Molecular Insights Into Systemic Sclerosisâ€Associated Interstitial Lung Disease. Arthritis and Rheumatology, 2014, 66, 485-487.	2.9	6
86	Review: Interstitial Lung Disease Associated With Systemic Sclerosis and Idiopathic Pulmonary Fibrosis: How Similar and Distinct?. Arthritis and Rheumatology, 2014, 66, 1967-1978.	2.9	162
87	A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenaseâ€2 in idiopathic pulmonary fibrosis. FASEB Journal, 2014, 28, 3183-3196.	0.2	87
88	The Membrane-Associated Adaptor Protein DOK5 Is Upregulated in Systemic Sclerosis and Associated with IGFBP-5-Induced Fibrosis. PLoS ONE, 2014, 9, e87754.	1.1	31
89	Transcriptome Analysis Reveals Differential Splicing Events in IPF Lung Tissue. PLoS ONE, 2014, 9, e92111.	1.1	73
90	Estradiol promotes the development of a fibrotic phenotype and is increased in the serum of patients with systemic sclerosis. Arthritis Research and Therapy, 2013, 15, R10.	1.6	34

#	Article	IF	Citations
91	The K+ Channel KCa3.1 as a Novel Target for Idiopathic Pulmonary Fibrosis. PLoS ONE, 2013, 8, e85244.	1.1	43
92	A Peptide Derived from Endostatin Ameliorates Organ Fibrosis. Science Translational Medicine, 2012, 4, 136ra71.	5.8	108
93	Localized expression of tenascin in systemic sclerosis–associated pulmonary fibrosis and its regulation by insulinâ€like growth factor binding protein 3. Arthritis and Rheumatism, 2012, 64, 272-280.	6.7	65
94	Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis and Rheumatism, 2011, 63, 783-794.	6.7	208
95	The Pro-Fibrotic Factor IGFBP-5 Induces Lung Fibroblast and Mononuclear Cell Migration. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 179-188.	1.4	53
96	The Fibrotic Phenotype Induced by IGFBP-5 Is Regulated by MAPK Activation and Egr-1-Dependent and -Independent Mechanisms. American Journal of Pathology, 2009, 175, 605-615.	1.9	76
97	Insulin-Like Growth Factor-II Is Increased in Systemic Sclerosis-Associated Pulmonary Fibrosis and Contributes to the Fibrotic Process via Jun N-Terminal Kinase- and Phosphatidylinositol-3 Kinase-Dependent Pathways. American Journal of Pathology, 2008, 172, 1580-1590.	1.9	60
98	Human Skin Culture as an Ex Vivo Model for Assessing the Fibrotic Effects of Insulin-Like Growth Factor Binding Proteins. Open Rheumatology Journal, 2008, 2, 17-22.	0.1	63
99	Cellular and Humoral Autoreactivity in Idiopathic Pulmonary Fibrosis. Journal of Immunology, 2007, 179, 2592-2599.	0.4	150
100	Pulmonary involvement in systemic sclerosis: Associations with genetic, serologic, sociodemographic, and behavioral factors. Arthritis and Rheumatism, 2007, 57, 318-326.	6.7	161
101	Insulin-Like Growth Factor-Binding Protein-5 Induces Pulmonary Fibrosis and Triggers Mononuclear Cellular Infiltration. American Journal of Pathology, 2006, 169, 1633-1642.	1.9	92
102	Insulin-like growth factor binding protein 5 induces skin fibrosis: A novel murine model for dermal fibrosis. Arthritis and Rheumatism, 2006, 54, 3001-3010.	6.7	75
103	Insulin-Like Growth Factor Binding Proteins 3 and 5 Are Overexpressed in Idiopathic Pulmonary Fibrosis and Contribute to Extracellular Matrix Deposition. American Journal of Pathology, 2005, 166, 399-407.	1.9	217
104	Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis and Rheumatism, 2003, 48, 1956-1963.	6.7	262