

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5626255/publications.pdf Version: 2024-02-01

KAY THO

#	Article	IF	CITATIONS
1	Assessing the environmental effects related to quantum dot structure, function, synthesis and exposure. Environmental Science: Nano, 2022, 9, 867-910.	4.3	11
2	Nano-enabled pesticides for sustainable agriculture and global food security. Nature Nanotechnology, 2022, 17, 347-360.	31.5	219
3	Application of Biomarker Tools Using Bivalve Models Toward the Development of Adverse Outcome Pathways for Contaminants of Emerging Concern. Environmental Toxicology and Chemistry, 2020, 39, 1472-1484.	4.3	21
4	Contaminants, mutagenicity and toxicity in the surface waters of Kyiv, Ukraine. Marine Pollution Bulletin, 2020, 155, 111153.	5.0	9
5	Effects of graphene oxide nanomaterial exposures on the marine bivalve, Crassostrea virginica. Aquatic Toxicology, 2019, 216, 105297.	4.0	36
6	A 72â€h exposure study with eastern oysters (<i>Crassostrea virginica</i>) and the nanomaterial graphene oxide. Environmental Toxicology and Chemistry, 2019, 38, 820-830.	4.3	22
7	Fate and Transformation of Graphene Oxide in Estuarine and Marine Waters. Environmental Science & Technology, 2019, 53, 5858-5867.	10.0	28
8	Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. Environmental Science: Nano, 2019, 6, 1619-1656.	4.3	48
9	Challenges associated with performing environmental research on titanium dioxide nanoparticles in aquatic environments. Integrated Environmental Assessment and Management, 2018, 14, 298-300.	2.9	1
10	Detection and Quantification of Graphene-Family Nanomaterials in the Environment. Environmental Science & Technology, 2018, 52, 4491-4513.	10.0	147
11	Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters II: Forms and bioavailability. Environmental Toxicology and Chemistry, 2018, 37, 1969-1979.	4.3	10
12	Assessing the release of copper from nanocopperâ€treated and conventional copperâ€treated lumber into marine waters I: Concentrations and rates. Environmental Toxicology and Chemistry, 2018, 37, 1956-1968.	4.3	16
13	Effects of micronized and nanoâ€eopper azole on marine benthic communities. Environmental Toxicology and Chemistry, 2018, 37, 362-375.	4.3	17
14	Cellular responses to inÂvitro exposures to β-blocking pharmaceuticals in hard clams and Eastern oysters. Chemosphere, 2018, 211, 360-370.	8.2	11
15	Magnitude of acute toxicity of marine sediments amended with conventional copper and nanocopper. Environmental Toxicology and Chemistry, 2018, 37, 2677-2681.	4.3	2
16	Aggregation, Sedimentation, Dissolution, and Bioavailability of Quantum Dots in Estuarine Systems. Environmental Science & Technology, 2017, 51, 1357-1363.	10.0	30
17	Microplastics in the aquatic environment—Perspectives on the scope of the problem. Environmental Toxicology and Chemistry, 2017, 36, 2259-2265.	4.3	6
18	A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Critical Reviews in Toxicology, 2017, 47, 771-814.	3.9	54

ΚΑΥ Τ ΗΟ

#	Article	IF	CITATIONS
19	Particleâ€bound metal transport after removal of a small dam in the Pawtuxet River, Rhode Island, USA. Integrated Environmental Assessment and Management, 2017, 13, 675-685.	2.9	2
20	Diagnosis of potential stressors adversely affecting benthic invertebrate communities in Greenwich Bay, Rhode Island, USA. Environmental Toxicology and Chemistry, 2017, 36, 449-462.	4.3	6
21	Environmental biodegradability of [¹⁴ C] singleâ€walled carbon nanotubes by <i>Trametes versicolor</i> and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Environmental Toxicology and Chemistry, 2015, 34, 247-251.	4.3	46
22	Adapting OECD Aquatic Toxicity Tests for Use with Manufactured Nanomaterials: Key Issues and Consensus Recommendations. Environmental Science & Technology, 2015, 49, 9532-9547.	10.0	153
23	Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments. Nanotoxicology, 2014, 8, 111-117.	3.0	27
24	On the likelihood of singleâ€walled carbon nanotubes causing adverse marine ecological effects. Integrated Environmental Assessment and Management, 2014, 10, 472-474.	2.9	7
25	A molecularâ€based approach for examining responses of eukaryotes in microcosms to contaminantâ€spiked estuarine sediments. Environmental Toxicology and Chemistry, 2014, 33, 359-369.	4.3	48
26	Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: Role of salinity and dissolved organic carbon. Environmental Toxicology and Chemistry, 2014, 33, 1023-1029.	4.3	68
27	Toxicity, Bioaccumulation, and Biotransformation of Silver Nanoparticles in Marine Organisms. Environmental Science & Technology, 2014, 48, 13711-13717.	10.0	62
28	Bioaccumulation and toxicity of singleâ€walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environmental Toxicology and Chemistry, 2013, 32, 1270-1277.	4.3	58
29	Use of a novel sediment exposure to determine the effects of triclosan on estuarine benthic communities. Environmental Toxicology and Chemistry, 2013, 32, 384-392.	4.3	18
30	Linkage of Genomic Biomarkers to Whole Organism End Points in a Toxicity Identification Evaluation (TIE). Environmental Science & Technology, 2013, 47, 1306-1312.	10.0	25
31	What's causing toxicity in sediments? Results of twenty years of toxicity identification and evaluations (TIES). Environmental Toxicology and Chemistry, 2013, 32, n/a-n/a.	4.3	31
32	Effects of triclosan on marine benthic and epibenthic organisms. Environmental Toxicology and Chemistry, 2012, 31, 1861-1866.	4.3	48
33	Diagnosis of potential stressors adversely affecting benthic communities in New Bedford Harbor, MA (USA). Integrated Environmental Assessment and Management, 2012, 8, 685-702.	2.9	4
34	Distribution, magnitude and characterization of the toxicity of Ukrainian estuarine sediments. Marine Pollution Bulletin, 2011, 62, 2442-2462.	5.0	15
35	Limitations of reverse polyethylene samplers (RePES) for evaluating toxicity of field contaminated sediments. Chemosphere, 2011, 83, 247-254.	8.2	6
36	Can sediment total organic carbon and grain size be used to diagnose organic enrichment in estuaries?. Environmental Toxicology and Chemistry, 2011, 30, 538-547.	4.3	31

ΚΑΥ Τ ΗΟ

#	Article	IF	CITATIONS
37	Assessment of supercritical fluid extraction use in whole sediment toxicity identification evaluations. Environmental Toxicology and Chemistry, 2011, 30, 819-827.	4.3	7
38	Recent Developments in Whole Sediment Toxicity Identification Evaluations: Innovations in Manipulations and Endpoints. Handbook of Environmental Chemistry, 2011, , 19-40.	0.4	7
39	Bioavailability assessment of a contaminated field sediment from Patrick Bayou, Texas, USA: Toxicity identification evaluation and equilibrium partitioning. Environmental Toxicology and Chemistry, 2010, 29, 742-750.	4.3	14
40	Concentration and distribution of hydrophobic organic contaminants and metals in the estuaries of Ukraine. Marine Pollution Bulletin, 2009, 58, 1103-1115.	5.0	23
41	EVALUATION OF THE EFFECTS OF COAL FLY ASH AMENDMENTS ON THE TOXICITY OF A CONTAMINATED MARINE SEDIMENT. Environmental Toxicology and Chemistry, 2009, 28, 26.	4.3	26
42	DEVELOPMENT AND EVALUATION OF REVERSE POLYETHYLENE SAMPLERS FOR MARINE PHASE II WHOLE-SEDIMENT TOXICITY IDENTIFICATION EVALUATIONS. Environmental Toxicology and Chemistry, 2009, 28, 749.	4.3	32
43	Comparing Polychaete and Polyethylene Uptake to Assess Sediment Resuspension Effects on PCB Bioavailability. Environmental Science & Technology, 2009, 43, 2865-2870.	10.0	66
44	Do Toxicity Identification and Evaluation Laboratory-Based Methods Reflect Causes of Field Impairment?. Environmental Science & Technology, 2009, 43, 6857-6863.	10.0	9
45	Marine Sediment Toxicity Identification Evaluations (TIEs): History, Principles, Methods, and Future Research. , 2008, , 75-95.		10
46	MARINE SEDIMENT TOXICITY IDENTIFICATION EVALUATION METHODS FOR THE ANIONIC METALS ARSENIC AND CHROMIUM. Environmental Toxicology and Chemistry, 2007, 26, 61.	4.3	16
47	USE OF POWDERED COCONUT CHARCOAL AS A TOXICITY IDENTIFICATION AND EVALUATION MANIPULATION FOR ORGANIC TOXICANTS IN MARINE SEDIMENTS. Environmental Toxicology and Chemistry, 2004, 23, 2124.	4.3	53
48	A toxicity identification evaluation of silty marine harbor sediments to characterize persistent and non-persistent constituents. Marine Pollution Bulletin, 2003, 46, 56-64.	5.0	21
49	An overview of toxicant identification in sediments and dredged materials. Marine Pollution Bulletin, 2002, 44, 286-293.	5.0	93
50	Issues in sediment toxicity and ecological risk assessment. Marine Pollution Bulletin, 2002, 44, 271-278.	5.0	106
51	Use of <i>Ulva lactuca</i> to identify ammonia toxicity in marine and estuarine sediments. Environmental Toxicology and Chemistry, 2001, 20, 2852-2859.	4.3	9
52	Development of a toxicity identification evaluation procedure for characterizing metal toxicity in marine sediments. Environmental Toxicology and Chemistry, 2000, 19, 982-991.	4.3	68
53	Importance of maternal transfer of the photoreactive polycyclic aromatic hydrocarbon fluoranthene from benthic adult bivalves to their pelagic larvae. Environmental Toxicology and Chemistry, 2000, 19, 2691-2698.	4.3	23
54	DEVELOPMENT OF A TOXICITY IDENTIFICATION EVALUATION PROCEDURE FOR CHARACTERIZING METAL TOXICITY IN MARINE SEDIMENTS. Environmental Toxicology and Chemistry, 2000, 19, 982.	4.3	6

Кау Т Но

#	Article	IF	CITATIONS
55	IMPORTANCE OF MATERNAL TRANSFER OF THE PHOTOREACTIVE POLYCYCLIC AROMATIC HYDROCARBON FLUORANTHENE FROM BENTHIC ADULT BIVALVES TO THEIR PELAGIC LARVAE. Environmental Toxicology and Chemistry, 2000, 19, 2691.	4.3	2
56	Use ofUlva Lactucato distinguish pH-dependent toxicants in marine waters and sediments. Environmental Toxicology and Chemistry, 1999, 18, 207-212.	4.3	27
57	Interlaboratory precision study of a whole sediment toxicity test with the bioluminescent bacteriumVibrio fischeri. Environmental Toxicology, 1999, 14, 339-345.	4.0	16
58	Identification of acute toxicants in new bedford harbor sediments. Environmental Toxicology and Chemistry, 1997, 16, 551-558.	4.3	72
59	Phototoxicity of individual polycyclic aromatic hydrocarbons and petroleum to marine invertebrate larvae and juveniles. Environmental Toxicology and Chemistry, 1997, 16, 2190-2199.	4.3	201
60	IDENTIFICATION OF ACUTE TOXICANTS IN NEW BEDFORD HARBOR SEDIMENTS. Environmental Toxicology and Chemistry, 1997, 16, 551.	4.3	6
61	Toxicity characterization of an industrial and a municipal effluent discharging to the marine environment. Marine Pollution Bulletin, 1995, 30, 524-535.	5.0	35