Elizabeth Troncoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5625949/publications.pdf

Version: 2024-02-01

394390 361001 36 1,208 19 35 citations g-index h-index papers 37 37 37 1340 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrated Membrane Process Coupled with Metal Sulfide Precipitation to Recover Zinc and Cyanide. Minerals (Basel, Switzerland), 2022, 12, 229.	2.0	2
2	Incentive Policies for Scientific Publications in the State Universities of Chile. Publications, 2022, 10, 20.	3.8	5
3	Impact of the Simulated Gastric Digestion Methodology on the In Vitro Intestinal Proteolysis and Lipolysis of Emulsion Gels. Foods, 2021, 10, 321.	4.3	8
4	Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. Membranes, 2021, 11, 368.	3.0	20
5	Comparative Study of Physicochemical Properties of Nanoemulsions Fabricated with Natural and Synthetic Surfactants. Processes, 2021, 9, 2002.	2.8	21
6	Metal Sulfide Precipitation: Recent Breakthroughs and Future Outlooks. Minerals (Basel,) Tj ETQq0 0 0 rgBT /Ove	erlock 10 7 2.0	ſf 50 542 Td (
7	Optimizing the SART process: A critical assessment of its design criteria. Minerals Engineering, 2020, 146, 106116.	4.3	10
8	Simulation of Human Small Intestinal Digestion of Starch Using an In Vitro System Based on a Dialysis Membrane Process. Foods, 2020, 9, 913.	4.3	11
9	Influence of the particle size and hydrocolloid type on lipid digestion of thickened emulsions. Food and Function, 2020, 11, 5955-5964.	4.6	18
10	An Experimental Study of Membrane Contactor Modules for Recovering Cyanide through a Gas Membrane Process. Membranes, 2020, 10, 105.	3.0	5
11	Timeâ€Dependent Rheological Behavior of Starchâ€Based Thickeners and Herb Infusion Dispersions for Dysphagia Management. Starch/Staerke, 2019, 71, 1700276.	2.1	6
12	The effect of denaturation degree of protein on the microstructure, rheology and physical stability of oil-in-water (O/W) emulsions stabilized by whey protein isolate. Journal of Food Engineering, 2019, 263, 253-261.	5.2	30
13	Impact of precipitate characteristics and precipitation conditions on the settling performance of a sulfide precipitation process: An exhaustive characterization of the aggregation behavior. Hydrometallurgy, 2019, 189, 105150.	4.3	13
14	Determination of Size Distribution of Precipitation Aggregates Using Non-Invasive Microscopy and Semiautomated Image Processing and Analysis. Minerals (Basel, Switzerland), 2019, 9, 724.	2.0	10
15	Performance evaluation of mass transfer correlations in the GFMA process: A review with perspectives to the design. Journal of Membrane Science, 2018, 554, 140-155.	8.2	12
16	The degree of protein aggregation in whey protein isolate-based dispersions modifies their surface and rheological properties. CYTA - Journal of Food, 2018, 16, 146-155.	1.9	16
17	Assessment of Industrial Modules to Design a GFMA Process for Cyanide Recovery Based on a Phenomenological Model. Processes, 2018, 6, 34.	2.8	6
18	A comprehensive study of glucose transfer in the human small intestine using an in vitro intestinal digestion system (i-IDS) based on a dialysis membrane process. Journal of Membrane Science, 2018, 564, 700-711.	8.2	9

#	Article	IF	Citations
19	Collagen extraction from mussel byssus: a new marine collagen source with physicochemical properties of industrial interest. Journal of Food Science and Technology, 2017, 54, 1228-1238.	2.8	25
20	Physical properties and lipid bioavailability of nanoemulsion-based matrices with different thickening agents. Food Hydrocolloids, 2017, 73, 243-254.	10.7	32
21	Development of an in vitro mechanical gastric system (IMGS) with realistic peristalsis to assess lipid digestibility. Food Research International, 2016, 90, 216-225.	6.2	40
22	Aerated whey protein gels as new food matrices: Effect of thermal treatment over microstructure and textural properties. Journal of Food Engineering, 2015, 163, 37-44.	5.2	17
23	Design and cost estimation of a gas-filled membrane absorption (GFMA) process as alternative for cyanide recovery in gold mining. Journal of Membrane Science, 2014, 466, 253-264.	8.2	18
24	Acid and Enzyme-Aided Collagen Extraction from the Byssus of Chilean Mussels (Mytilus Chilensis): Effect of Process Parameters on Extraction Performance. Food Biophysics, 2014, 9, 322-331.	3.0	18
25	Rheological and microstructural characterization of WPI-stabilized O/W emulsions exhibiting time-dependent flow behavior. LWT - Food Science and Technology, 2012, 46, 375-381.	5.2	35
26	Fabrication, characterization and lipase digestibility of food-grade nanoemulsions. Food Hydrocolloids, 2012, 27, 355-363.	10.7	110
27	Influence of particle size on the in vitro digestibility of protein-coated lipid nanoparticles. Journal of Colloid and Interface Science, 2012, 382, 110-116.	9.4	57
28	Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering, 2011, 106, 253-261.	5.2	60
29	Kinetics of extraction of reducing sugar during blanching of potato slices. Journal of Food Engineering, 2009, 91, 443-447.	5.2	33
30	Modeling water loss and oil uptake during vacuum frying of pre-treated potato slices. LWT - Food Science and Technology, 2009, 42, 1164-1173.	5.2	92
31	Comparative study of physical and sensory properties of pre-treated potato slices during vacuum and atmospheric frying. LWT - Food Science and Technology, 2009, 42, 187-195.	5. 2	76
32	Oil distribution in potato slices during frying. Journal of Food Engineering, 2008, 87, 200-212.	5.2	98
33	Oil partition in pre-treated potato slices during frying and cooling. Journal of Food Engineering, 2007, 81, 257-265.	5.2	71
34	Modeling Texture Kinetics during Thermal Processing of Potato Products. Journal of Food Science, 2007, 72, E102-E107.	3.1	52
35	Acrylamide reduction under different pre-treatments in French fries. Journal of Food Engineering, 2007, 79, 1287-1294.	5. 2	101
36	Modeling of textural changes during drying of potato slices. Journal of Food Engineering, 2007, 82, 577-584.	5 . 2	44