
SÃ³nia A O Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5625941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2011, 59, 9386-9393.	2.4	171
2	Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocolloids, 2017, 73, 120-128.	5.6	142
3	Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Research International, 2019, 115, 167-176.	2.9	140
4	Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark. Journal of Supercritical Fluids, 2012, 71, 71-79.	1.6	107
5	Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis×E.) Tj ETQq1 I	0.784314	rgBT /Overloc
6	Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L Industrial Crops and Products, 2010, 31, 521-526.	2.5	95
7	Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC–DAD–ESI-MSn. Food Chemistry, 2012, 135, 94-104.	4.2	91
8	Chlorophyta and Rhodophyta macroalgae: A source of health promoting phytochemicals. Food Chemistry, 2015, 183, 122-128.	4.2	79
9	Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 938, 65-74.	1.2	70
10	The Quest for Phenolic Compounds from Macroalgae: A Review of Extraction and Identification Methodologies. Biomolecules, 2019, 9, 847.	1.8	70
11	Phenolic composition and antioxidant activity of different morphological parts of Cynara cardunculus L. var. altilis (DC). Industrial Crops and Products, 2014, 61, 460-471.	2.5	66
12	Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with phenolic-based ionic liquids for cutaneous application. Carbohydrate Polymers, 2019, 206, 187-197.	5.1	66
13	Phenolic composition and antioxidant activity of industrial cork by-products. Industrial Crops and Products, 2013, 47, 262-269.	2.5	65
14	Photodegradation of metoprolol using a porphyrin as photosensitizer under homogeneous and heterogeneous conditions. Journal of Hazardous Materials, 2019, 370, 13-23.	6.5	56
15	Conductive polysaccharides-based proton-exchange membranes for fuel cell applications: The case of bacterial cellulose and fucoidan. Carbohydrate Polymers, 2020, 230, 115604.	5.1	53
16	Lipophilic phytochemicals from banana fruits of several Musa species. Food Chemistry, 2014, 162, 247-252.	4.2	52
17	Valorization of olive mill residues: Antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Industrial Crops and Products, 2013, 46, 359-368.	2.5	51
18	Impact of physical exercise on visceral adipose tissue fatty acid profile and inflammation in response to a high-fat diet regimen. International Journal of Biochemistry and Cell Biology, 2017, 87, 114-124.	1.2	45

SÃ³NIA A O SANTOS

#	Article	IF	CITATIONS
19	Dietary curcumin counteracts extracellular transthyretin deposition: Insights on the mechanism of amyloid inhibition. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 39-45.	1.8	43
20	The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds. Industrial Crops and Products, 2015, 76, 936-945.	2.5	39
21	Unveiling the Chemistry behind the Green Synthesis of Metal Nanoparticles. ChemSusChem, 2014, 7, 2704-2711.	3.6	37
22	Demystifying the morphology and size control on the biosynthesis of gold nanoparticles using Eucalyptus globulus bark extract. Industrial Crops and Products, 2017, 105, 83-92.	2.5	34
23	Effect of Elderberry (Sambucus nigra L.) Extract Supplementation in STZ-Induced Diabetic Rats Fed with a High-Fat Diet. International Journal of Molecular Sciences, 2017, 18, 13.	1.8	34
24	The ripe pulp of Mangifera indica L.: A rich source of phytosterols and other lipophilic phytochemicals. Food Research International, 2013, 54, 1535-1540.	2.9	33
25	Lipidomics Reveals Similar Changes in Serum Phospholipid Signatures of Overweight and Obese Pediatric Subjects. Journal of Proteome Research, 2019, 18, 3174-3183.	1.8	33
26	Natural-Based Antioxidant Extracts as Potential Mitigators of Fruit Browning. Antioxidants, 2020, 9, 715.	2.2	31
27	Photodegradation of the fungicide thiram in aqueous solutions. Kinetic studies and identification of the photodegradation products by HPLC–MS/MS. Chemosphere, 2013, 91, 993-1001.	4.2	30
28	Secondary metabolites from Eucalyptus grandis wood cultivated in Portugal, Brazil and South Africa. Industrial Crops and Products, 2017, 95, 357-364.	2.5	28
29	Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. International Journal of Molecular Sciences, 2017, 18, 63.	1.8	28
30	Long-Term Effect on Bioactive Components and Antioxidant Activity of Thermal and High-Pressure Pasteurization of Orange Juice. Molecules, 2018, 23, 2706.	1.7	28
31	Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up. Chemical Engineering Journal, 2013, 217, 82-90.	6.6	26
32	Profiling of lipophilic and phenolic phytochemicals of four cultivars from cherimoya (Annona) Tj ETQq0 0 0 rgB	Г /Overlock 4.2	10 Tf 50 222
33	Lipophilic Fraction of Cultivated Bifurcaria bifurcata R. Ross: Detailed Composition and In Vitro Prospection of Current Challenging Bioactive Properties. Marine Drugs, 2017, 15, 340.	2.2	26
34	Chlorogenic acid–arabinose hybrid domains in coffee melanoidins: Evidences from a model system. Food Chemistry, 2015, 185, 135-144.	4.2	25
35	Quantification of 3-deoxyglucosone (3DG) as an aging marker in natural and forced aged wines. Journal of Food Composition and Analysis, 2016, 50, 70-76.	1.9	23
36	Effect of copper ions on the degradation of thiram in aqueous solution: Identification of degradation products by HPLC–MS/MS. Journal of Hazardous Materials, 2014, 279, 125-132.	6.5	22

SÃ³NIA A O SANTOS

#	Article	IF	CITATIONS
37	Bioactive Phytochemicals from Wild Arbutus unedo L. Berries from Different Locations in Portugal: Quantification of Lipophilic Components. International Journal of Molecular Sciences, 2015, 16, 14194-14209.	1.8	22
38	Quinones as Strecker degradation reagents in wine oxidation processes. Food Chemistry, 2017, 228, 618-624.	4.2	22
39	The Health-Promoting Potential of Salix spp. Bark Polar Extracts: Key Insights on Phenolic Composition and In Vitro Bioactivity and Biocompatibility. Antioxidants, 2019, 8, 609.	2.2	22
40	Screening of lipophilic and phenolic extractives from different morphological parts of Halimione portulacoides. Industrial Crops and Products, 2014, 52, 373-379.	2.5	21
41	Identification and characterization of photodegradation products of metoprolol in the presence of natural fulvic acid by HPLC-UV-MSn. Journal of Hazardous Materials, 2017, 323, 250-263.	6.5	21
42	Biorefinery of high polymerization degree proanthocyanidins in the context of circular economy. Industrial Crops and Products, 2020, 151, 112450.	2.5	21
43	Bioprospecting for lipophilic-like components of five Phaeophyta macroalgae from the Portuguese coast. Journal of Applied Phycology, 2016, 28, 3151-3158.	1.5	19
44	Chromatographic Separation of Phenolic Compounds from Extra Virgin Olive Oil: Development and Validation of a New Method Based on a Biphenyl HPLC Column. International Journal of Molecular Sciences, 2019, 20, 201.	1.8	17
45	Cloned Pseudomonas aeruginosa lipoxygenase as efficient approach for the clean conversion of linoleic acid into valuable hydroperoxides. Chemical Engineering Journal, 2013, 231, 519-525.	6.6	16
46	Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules, 2021, 11, 1222.	1.8	16
47	Characterization and Cytotoxicity Assessment of the Lipophilic Fractions of Different Morphological Parts of Acacia dealbata. International Journal of Molecular Sciences, 2020, 21, 1814.	1.8	15
48	Phenolic composition and biological prospecting of grains and stems of Retama sphaerocarpa. Industrial Crops and Products, 2017, 95, 244-255.	2.5	14
49	Lipophilic composition of Scabiosa stellata L.: an underexploited plant from Batna (Algeria). Chemical Papers, 2018, 72, 753-762.	1.0	14
50	Valorisation of bark lipophilic fractions from three Portuguese Salix species: A systematic study of the chemical composition and inhibitory activity on Escherichia coli. Industrial Crops and Products, 2019, 132, 245-252.	2.5	14
51	Polar Lipids of Commercial Ulva spp. of Different Origins: Profiling and Relevance for Seaweed Valorization. Foods, 2021, 10, 914.	1.9	13
52	Vine Waste Valorisation: Integrated Approach for the Prospection of Bioactive Lipophilic Phytochemicals. International Journal of Molecular Sciences, 2019, 20, 4239.	1.8	12
53	Revealing the illegal harvesting of Manila clams (Ruditapes philippinarum) using fatty acid profiles of the adductor muscle. Food Control, 2020, 118, 107368.	2.8	12
54	One-Minute Synthesis of Size-Controlled Fucoidan-Gold Nanosystems: Antitumoral Activity and Dark Field Imaging. Materials, 2020, 13, 1076.	1.3	12

SÃ³NIA A O SANTOS

#	Article	IF	CITATIONS
55	Chemical Characterisation, Antioxidant and Antibacterial Activities of Pinus pinaster Ait. and Pinus pinea L. Bark Polar Extracts: Prospecting Forestry By-Products as Renewable Sources of Bioactive Compounds. Applied Sciences (Switzerland), 2022, 12, 784.	1.3	12
56	Current Challenges and Perspectives for the Use of Aqueous Plant Extracts in the Management of Bacterial Infections: The Case-Study of Salmonella enterica Serovars. International Journal of Molecular Sciences, 2019, 20, 940.	1.8	11
57	Analysis of linoleic acid hydroperoxides generated by biomimetic and enzymatic systems through an integrated methodology. Industrial Crops and Products, 2011, 34, 1474-1481.	2.5	10
58	Modification of acid hydrolysis lignin for value-added applications by micronization followed by hydrothermal alkaline treatment. Holzforschung, 2015, 69, 761-768.	0.9	10
59	Unveiling the bioactivity of Allium triquetrum L. lipophilic fractions: chemical characterization and in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus. Food and Function, 2020, 11, 5257-5265.	2.1	10
60	Retama sphaerocarpa: An unexploited and rich source of alkaloids, unsaturated fatty acids and other valuable phytochemicals. Industrial Crops and Products, 2015, 69, 238-243.	2.5	9
61	Current Research on the Bioprospection of Linear Diterpenes from Bifurcaria bifurcata: From Extraction Methodologies to Possible Applications. Marine Drugs, 2019, 17, 556.	2.2	8
62	Formation of oligomeric alkenylperoxides during the oxidation of unsaturated fatty acids: an electrospray ionization tandem mass spectrometry study. Journal of Mass Spectrometry, 2012, 47, 163-172.	0.7	7
63	Tuning of Proanthocyanidin Extract's Composition through Quaternary Eutectic Solvents Extraction. Antioxidants, 2020, 9, 1124.	2.2	7
64	Impact of Eutectic Solvents Utilization in the Microwave Assisted Extraction of Proanthocyanidins from Grape Pomace. Molecules, 2022, 27, 246.	1.7	6
65	Sustainable Valorization of Sambucus nigra L. Berries: From Crop Biodiversity to Nutritional Value of Juice and Pomace. Foods, 2022, 11, 104.	1.9	5
66	Chemical Profile of Lipophilic Fractions of Different Parts of Zizyphus lotus L. by GC-MS and Evaluation of Their Antiproliferative and Antibacterial Activities. Molecules, 2022, 27, 483.	1.7	4
67	Elderberry Stalks as a Source of High-Value Phytochemical: Essential Minerals and Lipophilic Compounds. Applied Sciences (Switzerland), 2022, 12, 382.	1.3	3
68	High pressure extraction of bioactive diterpenes from the macroalgae <i>Bifurcaria bifurcata</i> : an efficient and environmentally friendly approach. RSC Advances, 2019, 9, 39893-39903.	1.7	2
69	Green Separation Techniques for Omics Platforms—Liquid Chromatography and Capillary Electrophoresis. , 2021, , 627-644.		ο