## Philippe-E Roche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/562584/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                   | IF           | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 1  | Cooling with a subsonic flow of quantum fluid. Physical Review B, 2021, 103, .                                                                                                                                                                                                                                                            | 3.2          | 3         |
| 2  | Local measurement of vortex statistics in quantum turbulence. Europhysics Letters, 2021, 134, 46002.                                                                                                                                                                                                                                      | 2.0          | 5         |
| 3  | Experimental signature of quantum turbulence in velocity spectra?. New Journal of Physics, 2021, 23, 063005.                                                                                                                                                                                                                              | 2.9          | 5         |
| 4  | Investigation of properties of superfluid <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mmultiscripts><mml:mi>He</mml:mi><mml:mprescr<br>/&gt;<mml:none></mml:none><mml:mn>4</mml:mn></mml:mprescr<br></mml:mmultiscripts> turbulence using a hot-wire<br/>signal. Physical Review Fluids, 2021, 6, .</mml:math<br> | ripts<br>2.5 | 3         |
| 5  | The ultimate state of convection: a unifying picture of very high Rayleigh numbers experiments. New Journal of Physics, 2020, 22, 073056.                                                                                                                                                                                                 | 2.9          | 26        |
| 6  | Nano-shaped hot-wire for ultra-high resolution anemometry in cryogenic helium. Review of Scientific<br>Instruments, 2019, 90, .                                                                                                                                                                                                           | 1.3          | 5         |
| 7  | A local sensor for joint temperature and velocity measurements in turbulent flows. Review of Scientific Instruments, 2018, 89, 015005.                                                                                                                                                                                                    | 1.3          | 4         |
| 8  | Investigation of the small-scale statistics of turbulence in the Modane S1MA wind tunnel. CEAS Aeronautical Journal, 2018, 9, 269-281.                                                                                                                                                                                                    | 1.7          | 20        |
| 9  | Detection of vortex coherent structures in superfluid turbulence. Europhysics Letters, 2017, 118, 14005.                                                                                                                                                                                                                                  | 2.0          | 9         |
| 10 | Intermittency of quantum turbulence with superfluid fractions from 0% to 96%. Physics of Fluids, 2017, 29, .                                                                                                                                                                                                                              | 4.0          | 29        |
| 11 | Disproportionate entrance length in superfluid flows and the puzzle of counterflow instabilities.<br>Physical Review Fluids, 2017, 2, .                                                                                                                                                                                                   | 2.5          | 10        |
| 12 | Hot-wire anemometry for superfluid turbulent coflows. Review of Scientific Instruments, 2015, 86, 025007.                                                                                                                                                                                                                                 | 1.3          | 21        |
| 13 | Experimental, numerical, and analytical velocity spectra in turbulent quantum fluid. Proceedings of the United States of America, 2014, 111, 4683-4690.                                                                                                                                                                                   | 7.1          | 80        |
| 14 | Superfluid high REynolds von KÃirmÃin experiment. Review of Scientific Instruments, 2014, 85, 103908.                                                                                                                                                                                                                                     | 1.3          | 38        |
| 15 | Effective viscosity in quantum turbulence: A steady-state approach. Europhysics Letters, 2014, 106, 24006.                                                                                                                                                                                                                                | 2.0          | 30        |
| 16 | Cantilever anemometer based on a superconducting micro-resonator: Application to superfluid turbulence. Review of Scientific Instruments, 2012, 83, 125002.                                                                                                                                                                               | 1.3          | 17        |
| 17 | Energy cascade and the four-fifths law in superfluid turbulence. Europhysics Letters, 2012, 97, 34006.                                                                                                                                                                                                                                    | 2.0          | 57        |
| 18 | The ultimate regime of convection over uneven plates. Journal of Physics: Conference Series, 2011, 318, 052044.                                                                                                                                                                                                                           | 0.4          | 1         |

PHILIPPE-E ROCHE

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Kolmogorov cascade and equipartition of kinetic energy in numerical simulation of Superfluid turbulence. Journal of Physics: Conference Series, 2011, 318, 092031.                          | 0.4 | Ο         |
| 20 | Micro-Cantilever Anemometer for Cryogenic Helium. Journal of Physics: Conference Series, 2011, 318, 092030.                                                                                 | 0.4 | 2         |
| 21 | Investigation of intermittency in superfluid turbulence. Journal of Physics: Conference Series, 2011, 318, 042014.                                                                          | 0.4 | 20        |
| 22 | Mesoscale equipartition of kinetic energy in quantum turbulence. Europhysics Letters, 2011, 94, 24001.                                                                                      | 2.0 | 32        |
| 23 | Vorticity scattering measurements in a superfluid inertial round jet. Journal of Physics: Conference Series, 2011, 318, 092027.                                                             | 0.4 | 1         |
| 24 | Turbulent velocity spectra in superfluid flows. Physics of Fluids, 2010, 22, .                                                                                                              | 4.0 | 90        |
| 25 | On the triggering of the Ultimate Regime of convection. New Journal of Physics, 2010, 12, 085014.                                                                                           | 2.9 | 92        |
| 26 | Quantum turbulence at finite temperature: The two-fluids cascade. Europhysics Letters, 2009, 87, 54006.                                                                                     | 2.0 | 45        |
| 27 | Transition on local temperature fluctuations in highly turbulent convection. Europhysics Letters, 2009, 87, 44006.                                                                          | 2.0 | 13        |
| 28 | Convection at very high Rayleigh number: signature of transition from a micro-thermometer inside the flow. Springer Proceedings in Physics, 2009, , 159-162.                                | 0.2 | 1         |
| 29 | Shot noise of thermal plumes : Evidence of a boundary layer instability consistent with the onset of<br>Kraichnan's Regime of convection. Springer Proceedings in Physics, 2009, , 521-524. | 0.2 | 0         |
| 30 | Turbulent cascade of a quantum fluid at finite temperature. Springer Proceedings in Physics, 2009, ,<br>281-284.                                                                            | 0.2 | 0         |
| 31 | Vortex spectrum in superfluid turbulence: Interpretation of a recent experiment. Europhysics Letters, 2008, 81, 36002.                                                                      | 2.0 | 39        |
| 32 | Evidence of a boundary layer instability at very high Rayleigh number. Europhysics Letters, 2008, 83,<br>24005.                                                                             | 2.0 | 19        |
| 33 | TSF EXPERIMENT FOR COMPARISON OF HIGH REYNOLDS NUMBER TURBULENCE IN BOTH HE I AND HE II:<br>FIRST RESULTS. AIP Conference Proceedings, 2008, , .                                            | 0.4 | 3         |
| 34 | Vortex density spectrum of quantum turbulence. Europhysics Letters, 2007, 77, 66002.                                                                                                        | 2.0 | 81        |
| 35 | Ultimate regime of convection: search for a hidden triggering parameter. , 2007, , 645-647.                                                                                                 |     | 3         |
|    |                                                                                                                                                                                             |     |           |

Probing Vortex Density Fluctuations in Superfluid Turbulence. , 2007, , 532-534.

0

Philippe-E Roche

| #                                                     | Article                                                                                                                                                                                                                                                                                                                                                                                                         | IF                | CITATIONS            |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 37                                                    | Mesoscopic full counting statistics and exclusion models. European Physical Journal B, 2005, 43, 529-541.                                                                                                                                                                                                                                                                                                       | 1.5               | 19                   |
| 38                                                    | Ultimate regime of convection: Robustness to poor thermal reservoirs. Physics of Fluids, 2005, 17, 115107.                                                                                                                                                                                                                                                                                                      | 4.0               | 20                   |
| 39                                                    | Heat Transfer in Turbulent Rayleigh–Bénard Convection Below the Ultimate Regime. Journal of Low<br>Temperature Physics, 2004, 134, 1011-1042.                                                                                                                                                                                                                                                                   | 1.4               | 26                   |
| 40                                                    | Current Fluctuations in the One-Dimensional Symmetric Exclusion Process with Open Boundaries.<br>Journal of Statistical Physics, 2004, 115, 717-748.                                                                                                                                                                                                                                                            | 1.2               | 98                   |
| 41                                                    | Thickness and low-temperature conductivity of DNA molecules. Applied Physics Letters, 2004, 84, 1007-1009.                                                                                                                                                                                                                                                                                                      | 3.3               | 87                   |
| 42                                                    | Shot noise in carbon nanotubes. , 2003, , .                                                                                                                                                                                                                                                                                                                                                                     |                   | 3                    |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                      |
| 43                                                    | Prandtl and Rayleigh numbers dependences in Rayleigh-Bénard convection. Europhysics Letters, 2002, 58, 693-698.                                                                                                                                                                                                                                                                                                 | 2.0               | 68                   |
| 43<br>44                                              | Prandtl and Rayleigh numbers dependences in Rayleigh-Bénard convection. Europhysics Letters, 2002, 58, 693-698.<br>Shot-noise statistics in diffusive conductors. European Physical Journal B, 2002, 27, 393-398.                                                                                                                                                                                               | 2.0<br>1.5        | 68<br>10             |
| 43<br>44<br>45                                        | Prandtl and Rayleigh numbers dependences in Rayleigh-Bénard convection. Europhysics Letters, 2002, 58, 693-698.<br>Shot-noise statistics in diffusive conductors. European Physical Journal B, 2002, 27, 393-398.<br>Very low shot noise in carbon nanotubes. European Physical Journal B, 2002, 28, 217-222.                                                                                                   | 2.0<br>1.5<br>1.5 | 68<br>10<br>42       |
| <ul><li>43</li><li>44</li><li>45</li><li>46</li></ul> | Prandtl and Rayleigh numbers dependences in Rayleigh-Bénard convection. Europhysics Letters, 2002, 58, 693-698.   Shot-noise statistics in diffusive conductors. European Physical Journal B, 2002, 27, 393-398.   Very low shot noise in carbon nanotubes. European Physical Journal B, 2002, 28, 217-222.   Side wall effects in Rayleigh Bénard experiments. European Physical Journal B, 2001, 24, 405-408. | 2.0<br>1.5<br>1.5 | 68<br>10<br>42<br>72 |