David J Anderson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/562570/david-j-anderson-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52	5,718 citations	34	62
papers		h-index	g-index
62 ext. papers	7,748 ext. citations	24.2 avg, IF	6.15 L-index

#	Paper	IF	Citations
52	Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across medusa cell types. <i>Science Advances</i> , 2021 , 7, eabh1683	14.3	6
51	A genetically tractable jellyfish model for systems and evolutionary neuroscience. <i>Cell</i> , 2021 , 184, 5854	- 5 868.	e 2 0
50	The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice. <i>ELife</i> , 2021 , 10,	8.9	10
49	Make war not love: The neural substrate underlying a state-dependent switch in female social behavior <i>Neuron</i> , 2021 ,	13.9	5
48	Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. <i>Nature</i> , 2021 , 589, 258-263	50.4	29
47	A circuit logic for sexually shared and dimorphic aggressive behaviors in Drosophila. <i>Cell</i> , 2021 , 184, 507	7-5⁄20.€	± 186
46	Neurons that Function within an Integrator to Promote a Persistent Behavioral State in Drosophila. <i>Neuron</i> , 2020 , 105, 322-333.e5	13.9	31
45	Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25789-25799) ^{11.5}	12
44	Stimulus-specific hypothalamic encoding of a persistent defensive state. <i>Nature</i> , 2020 , 586, 730-734	50.4	17
43	Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7503-7512	11.5	57
42	Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior. <i>Cell</i> , 2019 , 179, 713-728.e17	56.2	84
41	Computational Neuroethology: A Call to Action. <i>Neuron</i> , 2019 , 104, 11-24	13.9	134
40	Imaging neuropeptide release at synapses with a genetically engineered reporter. ELife, 2019, 8,	8.9	16
39	Neuropeptidergic Control of an Internal Brain State Produced by Prolonged Social Isolation Stress. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2018 , 83, 97-103	3.9	7
38	A Brain Module for Scalable Control of Complex, Multi-motor Threat Displays. <i>Neuron</i> , 2018 , 100, 1474-	1499.6	24 24
37	The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress. <i>Cell</i> , 2018 , 173, 1265-1279.e19	56.2	110
36	Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex. <i>Nature</i> , 2017 , 550, 388-392	50.4	103

(2014-2017)

35	A Circuit Node that Integrates Convergent Input from Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in Drosophila. <i>Neuron</i> , 2017 , 95, 1112-1128.e7	13.9	50	
34	Circuit modules linking internal states and social behaviour in flies and mice. <i>Nature Reviews Neuroscience</i> , 2016 , 17, 692-704	13.5	128	
33	Behavioral responses to a repetitive visual threat stimulus express a persistent state of defensive arousal in Drosophila. <i>Current Biology</i> , 2015 , 25, 1401-15	6.3	65	
32	The BRAIN Initiative: developing technology to catalyse neuroscience discovery. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2015 , 370,	5.8	119	
31	Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E5351-60	11.5	171	
30	Ventromedial hypothalamic neurons control a defensive emotion state. ELife, 2015, 4,	8.9	399	
29	P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. <i>ELife</i> , 2015 , 4,	8.9	123	
28	Author response: Ventromedial hypothalamic neurons control a defensive emotion state 2015 ,		6	
27	Author response: P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila 2015 ,		3	
26	A framework for studying emotions across species. <i>Cell</i> , 2014 , 157, 187-200	56.2	269	
25	Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. <i>Cell</i> , 2014 , 156, 522-36	56.2	147	
24	Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. <i>Cell</i> , 2014 , 156, 221-35	56.2	193	
23	Central amygdala PKC-(+) neurons mediate the influence of multiple anorexigenic signals. <i>Nature Neuroscience</i> , 2014 , 17, 1240-8	25.5	203	
22	Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. <i>Cell</i> , 2014 , 158, 1348-1361	56.2	222	
21	Toward a science of computational ethology. <i>Neuron</i> , 2014 , 84, 18-31	13.9	238	
20	Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. <i>Nature Methods</i> , 2014 , 11, 325-32	21.6	201	
19	Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. <i>Nature</i> , 2014 , 509, 627-32	50.4	269	
18	Internal States and Behavioral Decision-Making: Toward an Integration of Emotion and Cognition. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2014 , 79, 199-210	3.9	40	

17	Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. <i>Neuron</i> , 2014 , 84, 806-20	13.9	99
16	How food controls aggression in Drosophila. <i>PLoS ONE</i> , 2014 , 9, e105626	3.7	36
15	Optogenetics, sex, and violence in the brain: implications for psychiatry. <i>Biological Psychiatry</i> , 2012 , 71, 1081-9	7.9	93
14	Functional identification of an aggression locus in the mouse hypothalamus. <i>Nature</i> , 2011 , 470, 221-6	50.4	604
13	Automated monitoring and analysis of social behavior in Drosophila. <i>Nature Methods</i> , 2009 , 6, 297-303	21.6	251
12	Neural correlates of competing fear behaviors evoked by an innately aversive stimulus. <i>Journal of Neuroscience</i> , 2003 , 23, 3855-68	6.6	93
11	Temporally compartmentalized expression of ephrin-B2 during renal glomerular development. Journal of the American Society of Nephrology: JASN, 2001 , 12, 2673-2682	12.7	50
10	Identification of a cell type-specific silencer in the first exon of the His-1 gene. <i>Journal of Cellular Biochemistry</i> , 2000 , 76, 615-624	4.7	8
9	Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. <i>Nature</i> , 2000 , 406, 199-203	50.4	318
8	NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. <i>Nature Genetics</i> , 1998 , 20, 136-42	36.3	399
7	Immortalization and controlled in vitro differentiation of murine multipotent neural crest stem cells. <i>Journal of Neurobiology</i> , 1997 , 32, 722-46		95
6	RPTP delta and the novel protein tyrosine phosphatase RPTP psi are expressed in restricted regions of the developing central nervous system. <i>Developmental Dynamics</i> , 1997 , 208, 48-61	2.9	49
5	Stem cells and transcription factors in the development of the mammalian neural crest. <i>FASEB Journal</i> , 1994 , 8, 707-13	0.9	46
4	Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. <i>Journal of Neurobiology</i> , 1993 , 24, 185-98		57
3	The Mouse Action Recognition System (MARS): a software pipeline for automated analysis of social behaviors in mice		12
2	Whole Animal Multiplexed Single-Cell RNA-Seq Reveals Plasticity of Clytia Medusa Cell Types		5
1	Functional modules within a distributed neural network control feeding in a model medusa		2