Seung-Ki Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5625586/publications.pdf

Version: 2024-02-01

133	7,769	81743	58464
papers	citations	h-index	g-index
149	149	149	8150
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Asymmetrical response of summer rainfall in East Asia to CO2 forcing. Science Bulletin, 2022, 67, 213-222.	4.3	16
2	What determines future changes in photovoltaic potential over East Asia?. Renewable Energy, 2022, 185, 338-347.	4.3	12
3	Dynamical Projections of the Mean and Extreme Wave Climate in the Bohai Sea, Yellow Sea and East China Sea. Frontiers in Marine Science, 2022, 9, .	1.2	3
4	Role of Upwind Precipitation in Transboundary Pollution and Secondary Aerosol Formation: A Case Study during the KORUS-AQ Field Campaign. Journal of Applied Meteorology and Climatology, 2022, 61, 159-174.	0.6	0
5	Anthropogenic Contribution to the Record-Breaking Warm and Wet Winter 2019/20 over Northwest Russia. Bulletin of the American Meteorological Society, 2022, 103, S38-S43.	1.7	3
6	Human Contribution to the 2020 Summer Successive Hot-Wet Extremes in South Korea. Bulletin of the American Meteorological Society, 2022, 103, S90-S97.	1.7	9
7	Improving Wet and Dry Deposition of Aerosols in WRFâ€Chem: Updates to Belowâ€Cloud Scavenging and Coarseâ€Particle Dry Deposition. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	10
8	Changes in heat stress considering temperature, humidity, and wind over East Asia under <scp>RCP8</scp> .5 and <scp>SSP5</scp> â€8.5 scenarios. International Journal of Climatology, 2022, 42, 6579-6595.	1.5	8
9	Contrasting roles of clouds as a sink and source of aerosols: A quantitative assessment using WRF-Chem over East Asia. Atmospheric Environment, 2022, 277, 119073.	1.9	5
10	Emergent Constraints on Future Expansion of the Indoâ€Pacific Warm Pool. Geophysical Research Letters, 2022, 49, .	1.5	9
11	Lengthening of summer season over the Northern Hemisphere under 1.5 °C and 2.0 °C global warming. Environmental Research Letters, 2022, 17, 014012.	2.2	12
12	Hysteresis of the intertropical convergence zone to CO2 forcing. Nature Climate Change, 2022, 12, 47-53.	8.1	32
13	Performance Evaluation and Future Projection of East Asian Climate using SSP Scenario-based CORDEX-East Asia Phase 2 Multi-RCM Simulations. Journal of Climate Change Research, 2022, 13, 339-354.	0.1	3
14	Future changes in heat wave characteristics and their impacts on the electricity demand in South Korea. Weather and Climate Extremes, 2022, 37, 100485.	1.6	1
15	Evaluation and Projection of Regional Climate over East Asia in CORDEX-East Asia Phase I Experiment. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57, 119-134.	1.3	27
16	Combined impacts of the El Niñoâ€Southern Oscillation and Pacific Decadal Oscillation on global droughts assessed using the standardized precipitation evapotranspiration index. International Journal of Climatology, 2021, 41, E1645.	1.5	31
17	Climatic yield potential of Japonica â€type rice in the Korean Peninsula under RCP scenarios using the ensemble of multiâ€GCM and multiâ€RCM chains. International Journal of Climatology, 2021, 41, E1287.	1.5	5
18	CMIP6 Model-Based Assessment of Anthropogenic Influence on the Long Sustained Western Cape Drought over 2015–19. Bulletin of the American Meteorological Society, 2021, 102, S45-S50.	1.7	13

#	Article	IF	CITATIONS
19	Recent Decreasing Trends in Surface PM2.5 over East Asia in the Winter-spring Season: Different Responses to Emissions and Meteorology between Upwind and Downwind Regions. Aerosol and Air Quality Research, 2021, 21, 200654.	0.9	14
20	Long-term evaluation of atmospheric composition reanalyses from CAMS, TCR-2, and MERRA-2 over South Korea: Insights into applications, implications, and limitations. Atmospheric Environment, 2021, 246, 118062.	1.9	7
21	Attribution of Extreme Precipitation with Updated Observations and CMIP6 Simulations. Journal of Climate, 2021, 34, 871-881.	1.2	52
22	Anthropogenic Greenhouse Gas and Aerosol Contributions to Extreme Temperature Changes during 1951–2015. Journal of Climate, 2021, 34, 857-870.	1.2	34
23	Independent <scp>ENSO</scp> and <scp>IOD</scp> impacts on rainfall extremes over Indonesia. International Journal of Climatology, 2021, 41, 3640-3656.	1.5	42
24	Global Cooling Hiatus Driven by an AMOC Overshoot in a Carbon Dioxide Removal Scenario. Earth's Future, 2021, 9, e2021EF002165.	2.4	21
25	COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review. Geoscientific Model Development, 2021, 14, 5125-5154.	1.3	55
26	Changes in extreme ocean wave heights under 1.5 °C, 2 °C, and 3 °C global warming. Weather and C Extremes, 2021, 33, 100358.	Climate 1.6	11
27	A Performance Evaluation of Potential Intensity over the Tropical Cyclone Passage to South Korea Simulated by CMIP5 and CMIP6 Models. Atmosphere, 2021, 12, 1214.	1.0	6
28	Has Global Warming Contributed to the Largest Number of Typhoons Affecting South Korea in September 2019?. Bulletin of the American Meteorological Society, 2021, 102, S51-S57.	1.7	5
29	Multi-model ensemble projections of extreme ocean wave heights over the Indian ocean. Climate Dynamics, 2021, 56, 2163-2180.	1.7	7
30	Transient and Quasiâ€Equilibrium Climate States at 1.5°C and 2°C Global Warming. Earth's Future, 2021, 9, e2021EF002274.	2.4	9
31	Contrasting factors on the trends in hot days and warm nights over Northern Hemisphere land during summer. Weather and Climate Extremes, 2021, 34, 100389.	1.6	4
32	Delayed Impacts of Arctic Seaâ€ice Loss on Eurasian Severe Cold Winters. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035286.	1,2	4
33	Possible impact of urbanization on extreme precipitation–temperature relationship in East Asian megacities. Weather and Climate Extremes, 2021, 34, 100401.	1.6	9
34	Hemispheric Asymmetry in Future Wave Power Changes: Seasonality and Physical Mechanisms. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017687.	1.0	6
35	How Does Pacific Decadal Oscillation Affect Tropical Cyclone Activity Over Far East Asia?. Geophysical Research Letters, 2021, 48, .	1.5	12
36	Evaluation of summer precipitation over Far East Asia and South Korea simulated by multiple regional climate models. International Journal of Climatology, 2020, 40, 2270-2284.	1.5	13

#	Article	IF	Citations
37	Human fingerprint in global weather. Nature Climate Change, 2020, 10, 15-16.	8.1	2
38	Projection of future precipitation change over South Korea by regional climate models and bias correction methods. Theoretical and Applied Climatology, 2020, 141, 1415-1429.	1.3	14
39	Climate Variability Impacts on Global Extreme Wave Heights: Seasonal Assessment Using Satellite Data and ERA5 Reanalysis. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016754.	1.0	22
40	Determining the Anthropogenic Greenhouse Gas Contribution to the Observed Intensification of Extreme Precipitation. Geophysical Research Letters, 2020, 47, e2019GL086875.	1.5	66
41	Volcanic-induced global monsoon drying modulated by diverse El Niñ0 responses. Science Advances, 2020, 6, .	4.7	24
42	Human influence on frequency of temperature extremes. Environmental Research Letters, 2020, 15, 064014.	2.2	38
43	Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather and Climate Extremes, 2020, 29, 100269.	1.6	211
44	Performance Evaluation of CMIP5 and CMIP6 Models on Heatwaves in Korea and Associated Teleconnection Patterns. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032583.	1.2	23
45	What matters in public perception and awareness of air quality? Quantitative assessment using internet search volume data. Environmental Research Letters, 2020, 15, 0940b4.	2.2	11
46	Quantifying Human Impact on the 2018 Summer Longest Heat Wave in South Korea. Bulletin of the American Meteorological Society, 2020, 101, S103-S108.	1.7	16
47	Comparison of Tropical Cyclone Activities over the Western North Pacific in CORDEX-East Asia Phase I and II Experiments. Journal of Climate, 2020, 33, 10593-10607.	1.2	12
48	Anthropogenic and Natural Contributions to the Lengthening of the Southern Hemisphere Summer Season. Journal of Climate, 2020, 33, 10539-10553.	1.2	6
49	Quantifying the Anthropogenic Greenhouse Gas Contribution to the Observed Spring Snow-Cover Decline Using the CMIP6 Multimodel Ensemble. Journal of Climate, 2020, 33, 9261-9269.	1.2	8
50	Anthropogenic Contribution to the 2017 Earliest Summer Onset in South Korea. Bulletin of the American Meteorological Society, 2019, 100, S73-S77.	1.7	6
51	Influence of Natural Climate Variability on the Extreme Ocean Surface Wave Heights Over the Indian Ocean. Journal of Geophysical Research: Oceans, 2019, 124, 6176-6199.	1.0	42
52	North American extreme precipitation events and related large-scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Climate Dynamics, 2019, 53, 6835-6875.	1.7	61
53	Abrupt Decrease of Wintertime Cold Nights in Korea in the Late 1980s. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 31-39.	1.3	2
54	Possible impact of the diabatic heating over the Indian subcontinent on heat waves in South Korea. International Journal of Climatology, 2019, 39, 1166-1180.	1.5	20

#	Article	IF	CITATIONS
55	The Köppenâ€Trewartha Climateâ€Type Changes Over the CORDEXâ€East Asia Phase 2 Domain Under 2 and 3 Æ Global Warming. Geophysical Research Letters, 2019, 46, 14030-14041.	°C 1.5	18
56	Multi-RCM near-term projections of summer climate extremes over East Asia. Climate Dynamics, 2019, 52, 4937-4952.	1.7	22
57	Assessing the Impact of Volcanic Eruptions on Climate Extremes Using CMIP5 Models. Journal of Climate, 2018, 31, 5333-5349.	1.2	17
58	ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 2018, 56, 185-206.	9.0	330
59	Future changes in extreme precipitation indices over Korea. International Journal of Climatology, 2018, 38, e862.	1.5	46
60	Time of emergence in regional precipitation changes: an updated assessment using the CMIP5 multi-model ensemble. Climate Dynamics, 2018, 51, 3179-3193.	1.7	23
61	Heat Stress Changes over East Asia under 1.5° and 2.0°C Global Warming Targets. Journal of Climate, 2018, 31, 2819-2831.	1.2	47
62	Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environmental Research Letters, 2018, 13, 044033.	2.2	52
63	Widening of the Hadley Cell from Last Glacial Maximum to Future Climate. Journal of Climate, 2018, 31, 267-281.	1.2	30
64	Multi-model event attribution of the summer 2013 heat wave in Korea. Weather and Climate Extremes, 2018, 20, 33-44.	1.6	15
65	Anthropogenic and Natural Contributions to the Lengthening of the Summer Season in the Northern Hemisphere. Journal of Climate, 2018, 31, 6803-6819.	1.2	30
66	Climate responses to volcanic eruptions assessed from observations and CMIP5 multi-models. Climate Dynamics, 2017, 48, 1017-1030.	1.7	21
67	Attribution of the local Hadley cell widening in the Southern Hemisphere. Geophysical Research Letters, 2017, 44, 1015-1024.	1.5	24
68	The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53, 149-173.	1.3	16
69	Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study. Climate Dynamics, 2017, 49, 4121-4139.	1.7	26
70	Attributing Causes of 2015 Record Minimum Sea-Ice Extent in the Sea of Okhotsk. Journal of Climate, 2017, 30, 4693-4703.	1.2	13
71	Role of Convective Precipitation in the Relationship between Subdaily Extreme Precipitation and Temperature. Journal of Climate, 2017, 30, 9527-9537.	1.2	68
72	Attribution of the 2015 record high sea surface temperatures over the central equatorial Pacific and tropical Indian Ocean. Environmental Research Letters, 2017, 12, 044024.	2.2	10

#	Article	IF	Citations
73	The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53, 257-272.	1.3	58
74	Longâ€Term Warming Trends in Korea and Contribution of Urbanization: An Updated Assessment. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,637.	1.2	27
75	Emergence of heat extremes attributable to anthropogenic influences. Geophysical Research Letters, 2016, 43, 3438-3443.	1.5	61
76	Influence of Climate Variability on Extreme Ocean Surface Wave Heights Assessed from ERA-Interim and ERA-20C. Journal of Climate, 2016, 29, 4031-4046.	1.2	66
77	Future changes in summer precipitation in regional climate simulations over the Korean Peninsula forced by multi-RCP scenarios of HadGEM2-AO. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 139-149.	1.3	39
78	Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 151-169.	1.3	45
79	Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: precipitation. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 171-189.	1.3	30
80	The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophysical Research Letters, 2016, 43, 7160-7167.	1.5	69
81	Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 223-236.	1.3	31
82	Spatial analysis of future East Asian seasonal temperature using two regional climate model simulations. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 237-249.	1.3	7
83	Human-caused Indo-Pacific warm pool expansion. Science Advances, 2016, 2, e1501719.	4.7	85
84	Multi-model attribution of upper-ocean temperature changes using an isothermal approach. Scientific Reports, 2016, 6, 26926.	1.6	4
85	Time of emergence of anthropogenic warming signals in the Northeast Asia assessed from multi-regional climate models. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 129-137.	1.3	22
86	Future changes in drought characteristics over South Korea using multi regional climate models with the standardized precipitation index. Asia-Pacific Journal of Atmospheric Sciences, 2016, 52, 209-222.	1.3	20
87	Attribution of extreme temperature changes during 1951–2010. Climate Dynamics, 2016, 46, 1769-1782.	1.7	74
88	Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dynamics, 2016, 46, 2469-2486.	1.7	130
89	Evaluation of the COSMO-CLM for East Asia Climate simulations: Sensitivity to Spectral Nudging. Journal of Climate Research, 2016, 11, 69-85.	0.1	3
90	Evaluating Extreme Rainfall Changes over Taiwan Using a Standardized Index. Terrestrial, Atmospheric and Oceanic Sciences, 2016, 27, 705-715.	0.3	8

#	Article	IF	CITATIONS
91	Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean. Bulletin of the American Meteorological Society, 2015, 96, S100-S104.	1.7	9
92	Anthropogenic Influence on the 2014 Record-Hot Spring in Korea. Bulletin of the American Meteorological Society, 2015, 96, S95-S99.	1.7	5
93	Attributing northern high-latitude precipitation change over the period 1966–2005 to human influence. Climate Dynamics, 2015, 45, 1713-1726.	1.7	42
94	Changes in weather and climate extremes over Korea and possible causes: A review. Asia-Pacific Journal of Atmospheric Sciences, 2015, 51, 103-121.	1.3	82
95	Intra-winter atmospheric circulation changes over East Asia and North Pacific associated with ENSO in a seasonal prediction model. Asia-Pacific Journal of Atmospheric Sciences, 2015, 51, 49-60.	1.3	11
96	Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 2015, 8, 759-762.	5.4	433
97	Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean. Bulletin of the American Meteorological Society, 2015, 96, S100-S104.	1.7	1
98	Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 2014, 5, 4646.	5.8	580
99	Further observational evidence of Hadley cell widening in the Southern Hemisphere. Geophysical Research Letters, 2014, 41, 2590-2597.	1.5	54
100	Detection and Attribution of Climate Change: from Global to Regional. , 2014, , 867-952.		144
101	Differentiating flavors of the Indian Ocean Dipole using dominant modes in tropical Indian Ocean rainfall. Geophysical Research Letters, 2014, 41, 8978-8986.	1.5	8
102	More-frequent extreme northward shifts of eastern Indian Ocean tropical convergence under greenhouse warming. Scientific Reports, 2014, 4, 6087.	1.6	18
103	Autumn Precipitation Trends over Southern Hemisphere Midlatitudes as Simulated by CMIP5 Models. Journal of Climate, 2013, 26, 8341-8356.	1.2	37
104	Multimodel Detection and Attribution of Extreme Temperature Changes. Journal of Climate, 2013, 26, 7430-7451.	1.2	86
105	Multimodel attribution of the Southern Hemisphere Hadley cell widening: Major role of ozone depletion. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3007-3015.	1.2	61
106	Attributing intensification of precipitation extremes to human influence. Geophysical Research Letters, 2013, 40, 5252-5257.	1.5	254
107	Influence of climate variability on seasonal extremes over Australia. Journal of Geophysical Research D: Atmospheres, 2013, 118, 643-654.	1.2	113

#	Article	IF	CITATIONS
109	Greening in the circumpolar high-latitude may amplify warming in the growing season. Climate Dynamics, 2012, 38, 1421-1431.	1.7	31
110	Human contribution to more-intense precipitation extremes. Nature, 2011, 470, 378-381.	13.7	1,695
111	Arctic Oscillation responses to greenhouse warming and role of synoptic eddy feedback. Journal of Geophysical Research, 2010, 115 , .	3.3	19
112	The Detection and Attribution of Human Influence on Climate. Annual Review of Environment and Resources, 2009, 34, 1-16.	5.6	65
113	Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations. Climate Dynamics, 2009, 32, 95-111.	1.7	62
114	Spatiotemporal patterns of changes in maximum and minimum temperatures in multiâ€model simulations. Geophysical Research Letters, 2009, 36, .	1.5	45
115	Simulation of Historic and Future Atmospheric Angular Momentum Effects on Length-of-day Variations with GCMs. International Association of Geodesy Symposia, 2009, , 447-454.	0.2	3
116	Multi-model Bayesian assessment of climate change in the northern annular mode. Global and Planetary Change, 2008, 60, 193-206.	1.6	6
117	Human influence on Arctic sea ice detectable from early 1990s onwards. Geophysical Research Letters, 2008, 35, .	1.5	77
118	Human-Induced Arctic Moistening. Science, 2008, 320, 518-520.	6.0	159
119	Probabilistic climate change predictions applying Bayesian model averaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2103-2116.	1.6	61
120	A Bayesian Assessment of Climate Change Using Multimodel Ensembles. Part II: Regional and Seasonal Mean Surface Temperatures. Journal of Climate, 2007, 20, 2769-2790.	1.2	30
121	Hierarchical evaluation of IPCC AR4 coupled climate models with systematic consideration of model uncertainties. Climate Dynamics, 2007, 29, 853-868.	1.7	19
122	A Bayesian approach to climate model evaluation and multi-model averaging with an application to global mean surface temperatures from IPCC AR4 coupled climate models. Geophysical Research Letters, 2006, 33, .	1.5	82
123	East Asian Climate Change in the 21st Century as Simulated by the Coupled Climate Model ECHO-G under IPCC SRES Scenarios. Journal of the Meteorological Society of Japan, 2006, 84, 1-26.	0.7	55
124	A Bayesian Assessment of Climate Change Using Multimodel Ensembles. Part I: Global Mean Surface Temperature. Journal of Climate, 2006, 19, 3237-3256.	1.2	43
125	Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - II. El Nino Southern Oscillation and North Atlantic Oscillation. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 622-640.	0.8	30
126	Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - I. Near-surface temperature, precipitation and mean sea level pressure. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 605-621.	0.8	72

Seung-Ki Min

#	Article	IF	CITATION
127	Climate change signal analysis for Northeast Asian surface temperature. Advances in Atmospheric Sciences, 2005, 22, 159-171.	1.9	1
128	Regional-scale climate change detection using a Bayesian decision method. Geophysical Research Letters, 2005, 32, .	1.5	14
129	Regional Climate Simulation for Korea using Dynamic Downscaling and Statistical Adjustment. Journal of the Meteorological Society of Japan, 2004, 82, 1629-1643.	0.7	37
130	A Bayesian decision method for climate change signal analysis. Meteorologische Zeitschrift, 2004, 13, 421-436.	0.5	29
131	Future Projections of East Asian Climate Change from Multi-AOGCM Ensembles of IPCC SRES Scenario Simulations. Journal of the Meteorological Society of Japan, 2004, 82, 1187-1211.	0.7	67
132	Spatial and temporal comparisons of droughts over Korea with East Asia. International Journal of Climatology, 2003, 23, 223-233.	1.5	135
133	CMIP5 model evaluation for extreme ocean wave height responses to ENSO. Climate Dynamics, 0, , 1.	1.7	0