
Charles R Farber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5625320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fentanyl-induced acute and conditioned behaviors in two inbred mouse lines: Potential role for Glyoxalase. Physiology and Behavior, 2022, 243, 113630.	1.0	1
2	MicroRNA-30b Is Both Necessary and Sufficient for Interleukin-21 Receptor-Mediated Angiogenesis in Experimental Peripheral Arterial Disease. International Journal of Molecular Sciences, 2022, 23, 271.	1.8	9
3	Genome-Wide mRNA Expression Analysis of Acute Psychological Stress Responses. MEDICC Review, 2022, 24, 35.	0.5	1
4	Exercise during pregnancy mitigates negative effects of parental obesity on metabolic function in adult mouse offspring. Journal of Applied Physiology, 2021, 130, 605-616.	1.2	11
5	Genomic variants within chromosome 14q32.32 regulate bone mass through MARK3 signaling in osteoblasts. Journal of Clinical Investigation, 2021, 131, .	3.9	4
6	Using "-omics―Data to Inform Genome-wide Association Studies (GWASs) in the Osteoporosis Field. Current Osteoporosis Reports, 2021, 19, 369-380.	1.5	4
7	Systems genetics in diversity outbred mice inform BMD GWAS and identify determinants of bone strength. Nature Communications, 2021, 12, 3408.	5.8	31
8	Current evidence on potential of adipose derived stem cells to enhance bone regeneration and future projection. World Journal of Stem Cells, 2021, 13, 1248-1277.	1.3	9
9	A computational approach for identification of core modules from a co-expression network and GWAS data. STAR Protocols, 2021, 2, 100768.	0.5	0
10	Genetic variability affects the skeletal response to immobilization in founder strains of the diversity outbred mouse population. Bone Reports, 2021, 15, 101140.	0.2	5
11	Genetic variability affects the response of skeletal muscle to disuse. Journal of Musculoskeletal Neuronal Interactions, 2021, 21, 387-396.	0.1	0
12	Dynamic changes in immune gene co-expression networks predict development of type 1 diabetes. Scientific Reports, 2021, 11, 22651.	1.6	3
13	Genetic determinants of bone mass and osteoporotic fracture. , 2020, , 1615-1630.		1
14	Identification of a Core Module for Bone Mineral Density through the Integration of a Co-expression Network and GWAS Data. Cell Reports, 2020, 32, 108145.	2.9	21
15	Sexually Dimorphic Crosstalk at the Maternal-Fetal Interface. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4831-e4847.	1.8	48
16	RNA-sequencing analysis of differential gene expression associated with arterial stiffness. Vascular, 2020, 28, 655-663.	0.4	3
17	Genetic analysis of osteoblast activity identifies Zbtb40 as a regulator of osteoblast activity and bone mass. PLoS Genetics, 2020, 16, e1008805.	1.5	15
18	Acute psychological stress, autonomic function, and arterial stiffness among women. International Journal of Psychophysiology, 2020, 155, 219-226.	0.5	9

#	Article	IF	CITATIONS
19	Old Mice Have Less Transcriptional Activation But Similar Periosteal Cell Proliferation Compared to <scp>Youngâ€Adult</scp> Mice in Response to in vivo Mechanical Loading. Journal of Bone and Mineral Research, 2020, 35, 1751-1764.	3.1	26
20	A novel voluntary weightlifting model in mice promotes muscle adaptation and insulin sensitivity with simultaneous enhancement of autophagy and mTOR pathway. FASEB Journal, 2020, 34, 7330-7344.	0.2	42
21	Osteoblasts Generate Testosterone From DHEA and Activate Androgen Signaling in Prostate Cancer Cells. Journal of Bone and Mineral Research, 2020, 36, 1566-1579.	3.1	3
22	Identification of Known and Novel Long Noncoding RNAs Potentially Responsible for the Effects of Bone Mineral Density (BMD) Genomewide Association Study (GWAS) Loci. Journal of Bone and Mineral Research, 2020, 37, 1500-1510.	3.1	2
23	The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17980-17989.	3.3	65
24	Mouse genome-wide association and systems genetics identifies Lhfp as a regulator of bone mass. PLoS Genetics, 2019, 15, e1008123.	1.5	22
25	Differences in First-Trimester Maternal Metabolomic Profiles in Pregnancies Conceived From Fertility Treatments. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1005-1019.	1.8	15
26	Genetic Dissection of Femoral and Tibial Microarchitecture. JBMR Plus, 2019, 3, e10241.	1.3	6
27	Antiangiogenic VEGF ₁₆₅ b Regulates Macrophage Polarization via S100A8/S100A9 in Peripheral Artery Disease. Circulation, 2019, 139, 226-242.	1.6	75
28	Dissecting the Genetics of Osteoporosis using Systems Approaches. Trends in Genetics, 2019, 35, 55-67.	2.9	43
29	Differential gene expression during placentation in pregnancies conceived with different fertility treatments compared with spontaneous pregnancies. Fertility and Sterility, 2019, 111, 535-546.	0.5	12
30	Single limb immobilization model for bone loss from unloading. Journal of Biomechanics, 2019, 83, 181-189.	0.9	19
31	Genetics of Bone Fat and Energy Regulation. , 2018, , 301-315.		Ο
32	Sex differences in the late first trimester human placenta transcriptome. Biology of Sex Differences, 2018, 9, 4.	1.8	109
33	Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Cell Systems, 2017, 4, 46-59.e4.	2.9	124
34	Genetic Dissection of a QTL Affecting Bone Geometry. G3: Genes, Genomes, Genetics, 2017, 7, 865-870.	0.8	4
35	The State of Systems Genetics in 2017. Cell Systems, 2017, 4, 7-15.	2.9	29
36	A MicroRNA93–Interferon Regulatory Factor-9–Immunoresponsive Gene-1–Itaconic Acid Pathway Modulates M2-Like Macrophage Polarization to Revascularize Ischemic Muscle. Circulation, 2017, 135, 2403-2425.	1.6	102

#	Article	IF	CITATIONS
37	Using GWAS to identify novel therapeutic targets for osteoporosis. Translational Research, 2017, 181, 15-26.	2.2	45
38	A Systems-Level Understanding of Cardiovascular Disease through Networks. , 2016, , 59-81.		3
39	Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection. PLoS Pathogens, 2016, 12, e1005419.	2.1	8
40	The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. Journal of Lipid Research, 2016, 57, 925-942.	2.0	143
41	Optimization of techniques for multiple platform testing in small, precious samples such as human chorionic villus sampling. Prenatal Diagnosis, 2016, 36, 1061-1070.	1.1	18
42	Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss. Scientific Reports, 2016, 6, 29475.	1.6	17
43	RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix. Nature Communications, 2016, 7, 11455.	5.8	61
44	Epigenome-Wide Association of Liver Methylation Patterns and Complex Metabolic Traits in Mice. Cell Metabolism, 2015, 21, 905-917.	7.2	98
45	Wnt-Lrp5 Signaling Regulates Fatty Acid Metabolism in the Osteoblast. Molecular and Cellular Biology, 2015, 35, 1979-1991.	1.1	115
46	Overlapping mouse subcongenic strains successfully separate two linked body fat QTL on distal MMU 2. BMC Genomics, 2015, 16, 16.	1.2	16
47	ADAM12: a genetic modifier of preclinical peripheral arterial disease. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H790-H803.	1.5	34
48	Wholeâ€genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature, 2015, 526, 112-117.	13.7	483
49	Bioenergetics During Calvarial Osteoblast Differentiation Reflect Strain Differences in Bone Mass. Endocrinology, 2014, 155, 1589-1595.	1.4	131
50	A Novel <i>IFITM5</i> Mutation in Severe Atypical Osteogenesis Imperfecta Type VI Impairs Osteoblast Production of Pigment Epithelium-Derived Factor. Journal of Bone and Mineral Research, 2014, 29, 1402-1411.	3.1	63
51	Glucagon Regulates Hepatic Kisspeptin to Impair Insulin Secretion. Cell Metabolism, 2014, 19, 667-681.	7.2	168
52	Bicc1 is a genetic determinant of osteoblastogenesis and bone mineral density. Journal of Clinical Investigation, 2014, 124, 2736-2749.	3.9	51
53	Trps1 Differentially Modulates the Bone Mineral Density between Male and Female Mice and Its Polymorphism Associates with BMD Differently between Women and Men. PLoS ONE, 2014, 9, e84485.	1.1	16
54	Quantitative trait loci for bone mineral density and femoral morphology in an advanced intercross population of mice. Bone, 2013, 55, 222-229.	1.4	7

#	Article	IF	CITATIONS
55	MicroRNA-93 Controls Perfusion Recovery After Hindlimb Ischemia by Modulating Expression of Multiple Genes in the Cell Cycle Pathway. Circulation, 2013, 127, 1818-1828.	1.6	86
56	Systems-Level Analysis of Genome-Wide Association Data. G3: Genes, Genomes, Genetics, 2013, 3, 119-129.	0.8	55
57	Contemporary Approaches for Identifying Rare Bone Disease Causing Genes. Bone Research, 2013, 1, 301-310.	5.4	1
58	Systems Genetic Analysis of Osteoblast-Lineage Cells. PLoS Genetics, 2012, 8, e1003150.	1.5	48
59	Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mammalian Genome, 2012, 23, 680-692.	1.0	134
60	Unraveling Inflammatory Responses using Systems Genetics and Gene-Environment Interactions in Macrophages. Cell, 2012, 151, 658-670.	13.5	134
61	Genome Scans for Transmission Ratio Distortion Regions in Mice. Genetics, 2012, 191, 247-259.	1.2	31
62	Systems Genetics: A Novel Approach to Dissect the Genetic Basis of Osteoporosis. Current Osteoporosis Reports, 2012, 10, 228-235.	1.5	12
63	Increasing Association Mapping Power and Resolution in Mouse Genetic Studies Through the Use of Meta-Analysis for Structured Populations. Genetics, 2012, 191, 959-967.	1.2	14
64	Gene networks associated with conditional fear in mice identified using a systems genetics approach. BMC Systems Biology, 2011, 5, 43.	3.0	71
65	Systems genetics analysis of mouse chondrocyte differentiation. Journal of Bone and Mineral Research, 2011, 26, 747-760.	3.1	14
66	ldentification of quantitative trait loci influencing skeletal architecture in mice: Emergence of <i>Cdh11</i> as a primary candidate gene regulating femoral morphology. Journal of Bone and Mineral Research, 2011, 26, 2174-2183.	3.1	26
67	Comparative Analysis of Proteome and Transcriptome Variation in Mouse. PLoS Genetics, 2011, 7, e1001393.	1.5	548
68	Mouse Genome-Wide Association and Systems Genetics Identify Asxl2 As a Regulator of Bone Mineral Density and Osteoclastogenesis. PLoS Genetics, 2011, 7, e1002038.	1.5	108
69	Genetic analyses involving microsatellite ETH10 genotypes on bovine chromosome 5 and performance trait measures in Angus- and Brahman-influenced cattle1. Journal of Animal Science, 2011, 89, 2031-2041.	0.2	9
70	Hippocampal Gene Expression Analysis Highlights Ly6a/Sca-1 as Candidate Gene for Previously Mapped Novelty Induced Behaviors in Mice. PLoS ONE, 2011, 6, e20716.	1.1	4
71	Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data. Journal of Bone and Mineral Research, 2010, 25, 2359-2367.	3.1	78
72	Serious limitations of the QTL/Microarray approach for QTL gene discovery. BMC Biology, 2010, 8, 96.	1.7	29

#	Article	IF	CITATIONS
73	A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Research, 2010, 20, 281-290.	2.4	299
74	Segregation Analysis of a Sex Ratio Distortion Locus in Congenic Mice. Journal of Heredity, 2010, 101, 351-359.	1.0	3
75	An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits. PLoS Genetics, 2010, 6, e1000977.	1.5	191
76	Using global gene expression to dissect the genetics of osteoporosis. IBMS BoneKEy, 2010, 7, 353-363.	0.1	1
77	Genetics of Osteoporosis. Translational Endocrinology & Metabolism, 2010, , 87-116.	0.2	1
78	Genetic dissection of a major mouse obesity QTL (<i>Carfhg2</i>): integration of gene expression and causality modeling. Physiological Genomics, 2009, 37, 294-302.	1.0	23
79	Evidence of maternal QTL affecting growth and obesity in adult mice. Mammalian Genome, 2009, 20, 269-280.	1.0	23
80	Polymorphisms in the <i>STAT6</i> gene and their association with carcass traits in feedlot cattle. Animal Genetics, 2009, 40, 878-882.	0.6	47
81	Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nature Genetics, 2009, 41, 415-423.	9.4	257
82	An Integrative Genetics Approach to Identify Candidate Genes Regulating BMD: Combining Linkage, Gene Expression, and Association. Journal of Bone and Mineral Research, 2009, 24, 105-116.	3.1	52
83	Future of Osteoporosis Genetics: Enhancing Genome-Wide Association Studies. Journal of Bone and Mineral Research, 2009, 24, 1937-1942.	3.1	25
84	Overexpression of Scg5 increases enzymatic activity of PCSK2 and is inversely correlated with body weight in congenic mice. BMC Genetics, 2008, 9, 34.	2.7	14
85	High-Resolution Mapping of Gene Expression Using Association in an Outbred Mouse Stock. PLoS Genetics, 2008, 4, e1000149.	1.5	53
86	Integrating Global Gene Expression Analysis and Genetics. Advances in Genetics, 2008, 60, 571-601.	0.8	48
87	Fine Mapping Reveals Sex Bias in Quantitative Trait Loci Affecting Growth, Skeletal Size and Obesity-Related Traits on Mouse Chromosomes 2 and 11. Genetics, 2007, 175, 349-360.	1.2	38
88	Dissection of a genetically complex cluster of growth and obesity QTLs on mouse chromosome 2 using subcongenic intercrosses. Mammalian Genome, 2007, 18, 635-645.	1.0	19
89	Genome-wide isolation of growth and obesity QTL using mouse speed congenic strains. BMC Genomics, 2006, 7, 102.	1.2	27
90	Identification of putative homology between horse microsatellite flanking sequences and cross-species ESTs, mRNAs and genomic sequences. Animal Genetics, 2004, 35, 28-33.	0.6	17

#	Article	IF	CITATIONS
91	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	9.4	1,034
92	Putative in silico mapping of DNA sequences to livestock genome maps using SSLP flanking sequences. Animal Genetics, 2003, 34, 11-18.	0.6	16
93	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	7.7	390
94	Comparative mapping of genes flanking the human chromosome 12 evolutionary breakpoint in the pig. Cytogenetic and Genome Research, 2003, 102, 139-144.	0.6	9
95	Mapping of Porcine Genetic Markers Generated by Representational Difference Analysis. Animal Biotechnology, 2003, 14, 87-102.	0.7	1