Mattia Vaccari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5625121/publications.pdf

Version: 2024-02-01

302 papers 24,170 citations

68 h-index 148 g-index

306 all docs

306 does citations

306 times ranked 14085 citing authors

#	Article	IF	CITATIONS
1	The <i>Gaia</i> mission. Astronomy and Astrophysics, 2016, 595, A1.	5.1	4,509
2	The <i>>Herschel</i> -SPIRE instrument and its in-flight performance. Astronomy and Astrophysics, 2010, 518, L3.	5.1	1,744
3	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2016, 595, A2.	5.1	1,590
4	THE COSMOS2015 CATALOG: EXPLORING THE 1Â< z <Â6 UNIVERSE WITH HALF A MILLION GALAXIES. Astrophysical Journal, Supplement Series, 2016, 224, 24.	7.7	784
5	Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. Astronomy and Astrophysics, 2008, 487, 837-852.	5.1	696
6	The <i>Herschel </i> Multi-tiered Extragalactic Survey: HerMES. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1614-1635.	4.4	646
7	The Herschel ATLAS. Publications of the Astronomical Society of the Pacific, 2010, 122, 499-515.	3.1	489
8	The SCUBA Half-Degree Extragalactic Survey - II. Submillimetre maps, catalogue and number counts. Monthly Notices of the Royal Astronomical Society, 2006, 372, 1621-1652.	4.4	360
9	The Herschelâ $$ PEP/HerMES luminosity function \hat{a} \tilde{e} I. Probing the evolution of PACS selected Galaxies to z \hat{a} % f 4. Monthly Notices of the Royal Astronomical Society, 2013, 432, 23-52.	4.4	341
10	The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. Publications of the Astronomical Society of the Pacific, 2020, 132, 035001.	3.1	337
11	Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 2021, 18, 3273-3294.	3.5	287
12	The SCUBA HAlf Degree Extragalactic Survey - III. Identification of radio and mid-infrared counterparts to submillimetre galaxies. Monthly Notices of the Royal Astronomical Society, 0, 380, 199-228.	4.4	269
13	HerMES: The SPIRE confusion limit. Astronomy and Astrophysics, 2010, 518, L5.	5.1	253
14	The Herschel Reference Survey. Publications of the Astronomical Society of the Pacific, 2010, 122, 261-287.	3.1	235
15	HerMES: SPIRE galaxy number counts at 250, 350, and $500 \hat{A} < i > \hat{l} \frac{1}{4} < i> m$. Astronomy and Astrophysics, 2010, 518, L21.	5.1	196
16	The far-infrared/radio correlation as probed by <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L31.	5.1	190
17	<i>Herschel</i> unveils a puzzling uniformity of distant dusty galaxies. Astronomy and Astrophysics, 2010, 518, L29.	5.1	182
18	The suppression of star formation by powerful active galactic nuclei. Nature, 2012, 485, 213-216.	27.8	175

#	Article	IF	Citations
19	An Overview of the Dwarf Galaxy Survey. Publications of the Astronomical Society of the Pacific, 2013, 125, 600-635.	3.1	172
20	The LOFAR Two-metre Sky Survey. Astronomy and Astrophysics, 2022, 659, A1.	5.1	169
21	HerMES: deep number counts at 250 <i>μ</i> m, 350 <i>μ</i> m and 500 <i>μ</i> m in the CO fields and the build-up of the cosmic infrared background. Astronomy and Astrophysics, 2012, 542, A58.	SMOS and	d GOODS-N
22	Photometric redshifts in the SWIRE Survey. Monthly Notices of the Royal Astronomical Society, 2008, 386, 697-714.	4.4	158
23	The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images. Monthly Notices of the Royal Astronomical Society, 2010, 409, 48-65.	4.4	156
24	Tracing the cosmic growth of supermassive black holes to zÂâ^¼Â3 with Herschelâ~ Monthly Notices of the Royal Astronomical Society, 2014, 439, 2736-2754.	4.4	150
25	<i>Herschel</i> PEP/HerMES: the redshift evolution (0 â‰ <i>z</i> ≠4) of dust attenuation and of the total (UV+IR) star formation rate density. Astronomy and Astrophysics, 2013, 554, A70.	5.1	148
26	HerMES: CANDIDATE GRAVITATIONALLY LENSED GALAXIES AND LENSING STATISTICS AT SUBMILLIMETER WAVELENGTHS. Astrophysical Journal, 2013, 762, 59.	4.5	147
27	Dust spectral energy distributions of nearby galaxies: an insight from the <i>Herschel </i> Reference Survey. Astronomy and Astrophysics, 2014, 565, A128.	5.1	147
28	Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength⟨i⟩Spitzer⟨ i⟩observations up to⟨i⟩z⟨ i⟩ ~ 2.5. Astronomy and Astrophysics, 2010, 515, A8.	5.1	146
29	Evolution of dust temperature of galaxies through cosmic time as seen by Herschelâ* Monthly Notices of the Royal Astronomical Society, 2010, 409, 75-82.	4.4	145
30	HerMES: Far infrared properties of known AGN in the HerMES fields. Astronomy and Astrophysics, 2010, 518, L33.	5.1	144
31	COSMOS2020: A Panchromatic View of the Universe to z \hat{a}^4 10 from Two Complementary Catalogs. Astrophysical Journal, Supplement Series, 2022, 258, 11.	7.7	140
32	The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Deï¬nition and Goals*. Publications of the Astronomical Society of the Pacific, 2012, 124, 714-736.	3.1	135
33	The Herschel census of infrared SEDs through cosmic timeâ~ Monthly Notices of the Royal Astronomical Society, 2013, 431, 2317-2340.	4.4	134
34	HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 772, 77.	4.5	132
35	The <i>Herschel </i> Space Observatory view of dust in M81. Astronomy and Astrophysics, 2010, 518, L65.	5.1	129
36	The European Large-ArealSOSurvey (ELAIS): the final band-merged catalogue. Monthly Notices of the Royal Astronomical Society, 2004, 351, 1290-1306.	4.4	121

#	Article	IF	Citations
37	Revealing the cold dust in low-metallicity environments. Astronomy and Astrophysics, 2013, 557, A95.	5.1	120
38	The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3. Nature, 2013, 498, 338-341.	27.8	119
39	Luminosity functions for galaxies and quasars in the Spitzer Wide-area Infrared Extragalactic Legacy Survey. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1159-1180.	4.4	113
40	Spectral Energy Distributions and Luminosities of Galaxies and Active Galactic Nuclei in the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Legacy Survey. Astronomical Journal, 2005, 129, 1183-1197.	4.7	112
41	Extended x-ray-absorption fine-structure measurements of copper: Local dynamics, anharmonicity, and thermal expansion. Physical Review B, 2004, 70, .	3.2	111
42	The SCUBA HAlf Degree Extragalactic Survey – VI. 350-νm mapping of submillimetre galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1597-1610.	4.4	108
43	The Herschel Multi-tiered Extragalactic Survey: SPIRE-mm photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2758-2773.	4.4	99
44	HerMES: THE CONTRIBUTION TO THE COSMIC INFRARED BACKGROUND FROM GALAXIES SELECTED BY MASS AND REDSHIFT. Astrophysical Journal, 2013, 779, 32.	4.5	99
45	HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations. Monthly Notices of the Royal Astronomical Society, 2010, 409, 109-121.	4.4	98
46	Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 1011 solar masses. Nature, 2011, 470, 510-512.	27.8	98
47	The <i>Herschel</i> -ATLAS: a sample of 500Âμm-selected lensed galaxies over 600Âdeg ² . Monthly Notices of the Royal Astronomical Society, 2017, 465, 3558-3580.	4.4	96
48	The first release of data from the Herschel ATLAS: the SPIRE imagesã~ Monthly Notices of the Royal Astronomical Society, 2011, 415, 911-917.	4.4	95
49	HerMES: CANDIDATE HIGH-REDSHIFT GALAXIES DISCOVERED WITH <i>HERSCHEL</i> /i>/SPIRE,. Astrophysical Journal, 2014, 780, 75.	4.5	92
50	H-ATLAS: PACS imaging for the Science Demonstration Phase. Monthly Notices of the Royal Astronomical Society, 2010, 409, 38-47.	4.4	90
51	Submillimetre photometry of 323 nearby galaxies from the <i>Herschel </i> Reference Survey. Astronomy and Astrophysics, 2012, 543, A161.	5.1	90
52	The SCUBA Half Degree Extragalactic Survey - IV. Radio-mm-FIR photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1571-1588.	4.4	89
53	PACS photometry of the Herschel Reference Survey – far-infrared/submillimetre colours as tracers of dust properties in nearby galaxiesâ~ Monthly Notices of the Royal Astronomical Society, 2014, 440, 942-956.	4.4	89
54	The star formation rate density from $\langle i \rangle z \langle i \rangle = 1$ to 6. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1100-1111.	4.4	89

#	Article	IF	CITATIONS
55	HELP: xid+, the probabilistic de-blender for <i>Herschel</i> SPIRE maps. Monthly Notices of the Royal Astronomical Society, 2017, 464, 885-896.	4.4	89
56	DISCOVERY OF A MULTIPLY LENSED SUBMILLIMETER GALAXY IN EARLY HerMES HERSCHEL/SPIRE [*] DATA. Astrophysical Journal Letters, 2011, 732, L35.	8.3	86
57	Cosmic evolution of the galaxy's mass and luminosity functions by morphological type from multi-wavelength data in the CDF-South. Astronomy and Astrophysics, 2006, 453, 397-421.	5.1	82
58	The SCUBA HAlf Degree Extragalactic Survey (SHADES) – VII. Optical/IR photometry and stellar masses of submillimetre galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1107-1130.	4.4	80
59	HELP: modelling the spectral energy distributions of <i>Herschel</i> detected galaxies in the ELAIS N1 field. Astronomy and Astrophysics, 2018, 620, A50.	5.1	80
60	Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned. Water Science and Technology, 2015, 72, 1007-1015.	2.5	78
61	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2017, 605, A79.	5.1	78
62	<i>Gaia</i> Data Release 1. Astronomy and Astrophysics, 2017, 601, A19.	5.1	77
63	Left ventricular remodelling, and systolic and diastolic function in young adults with thalassaemia major: a Doppler echocardiographic assessment and correlation with haematological data. British Heart Journal, 2003, 89, 762-766.	2.1	74
64	The SCUBA Half-Degree Extragalactic Survey – I. Survey motivation, design and data processing. Monthly Notices of the Royal Astronomical Society, 2005, 363, 563-580.	4.4	74
65	Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from theâ€,Herschel-ATLASâ~ Monthly Notices of the Royal Astronomical Society, 2011, 415, 3473-3484.	4.4	73
66	FIR colours and SEDs of nearby galaxies observed with <i> Herschel </i> . Astronomy and Astrophysics, 2010, 518, L61.	5.1	72
67	The VLA-COSMOS 3 GHz Large Project: Evolution of Specific Star Formation Rates out to zÂâ^1⁄4Â5. Astrophysical Journal, 2020, 899, 58.	4.5	72
68	Probing the molecular interstellar medium of M82 with <i>Herschel </i> -SPIRE spectroscopy. Astronomy and Astrophysics, 2010, 518, L37.	5.1	71
69	How Assessment Methods Can Support Solid Waste Management in Developing Countries—A Critical Review. Sustainability, 2014, 6, 545-570.	3.2	71
70	Supernova rates from the SUDARE VST-OmegaCAM search. Astronomy and Astrophysics, 2015, 584, A62.	5.1	71
71	The JCMT Nearby Galaxies Legacy Survey — VIII. CO data and the LCO(3-2)-LFIR correlation in the SINGS sample. Monthly Notices of the Royal Astronomical Society, 2012, 424, 3050-3080.	4.4	70
72	Herschel Multitiered Extragalactic Survey: clusters of dusty galaxies uncovered by Herschelâ [~] and Planckâ€. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1193-1211.	4.4	69

#	Article	IF	CITATIONS
73	HerMES: Halo occupation number and bias properties of dusty galaxies from angular clustering measurements. Astronomy and Astrophysics, 2010, 518, L22.	5.1	68
74	A Complete Multiwavelength Characterization of FaintChandraX-Ray Sources Seen in theSpitzerWide-Area Infrared Extragalactic (SWIRE) Survey. Astronomical Journal, 2005, 129, 2074-2101.	4.7	66
75	SPIRE imaging of M 82: Cool dust in the wind and tidal streams. Astronomy and Astrophysics, 2010, 518, L66.	5.1	65
76	A FAR-INFRARED SPECTROSCOPIC SURVEY OF INTERMEDIATE REDSHIFT (ULTRA) LUMINOUS INFRARED GALAXIES. Astrophysical Journal, 2014, 796, 63.	4.5	65
77	CANDIDATE GRAVITATIONALLY LENSED DUSTY STAR-FORMING GALAXIES IN THE HERSCHEL WIDE AREA SURVEYS*. Astrophysical Journal, 2016, 823, 17.	4.5	65
78	Star formation in <i>Herschel </i> 's Monsters versus semi-analytic models. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3419-3426.	4.4	64
79	The LOFAR LBA Sky Survey. Astronomy and Astrophysics, 2021, 648, A104.	5.1	64
80	Herschel reveals a Tdust-unbiased selection of $z\hat{a}^{1}/4$ 2 ultraluminous infrared galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 409, 22-28.	4.4	63
81	Benchmarking of energy consumption in municipal wastewater treatment plants – a survey of over 200 plants in Italy. Water Science and Technology, 2018, 77, 2242-2252.	2.5	63
82	HerMES: point source catalogues from deepâ€,Herschel-SPIRE observationsã~ Monthly Notices of the Royal Astronomical Society, 2012, 419, 377-389.	4.4	62
83	Mid-infrared spectroscopy of infrared-luminous galaxies at <i>z</i> \hat{a}^4 0.5-3. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1695-1722.	4.4	61
84	The JCMT Nearby Galaxies Legacy Survey - III. Comparisons of cold dust, polycyclic aromatic hydrocarbons, molecular gas and atomic gas in NGC 2403. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1409-1425.	4.4	61
85	Einstein and Debye models for EXAFS parallel and perpendicular mean-square relative displacements. Journal of Synchrotron Radiation, 2006, 13, 321-325.	2.4	60
86	The <i> Herschel </i> > Exploitation of Local Galaxy Andromeda (HELGA). Astronomy and Astrophysics, 2012, 546, A34.	5.1	59
87	The XMM-SERVS survey: new XMM–Newton point-source catalogue for the XMM-LSS field. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2132-2163.	4.4	59
88	Cardiac Troponin I and Q-wave perioperative myocardial infarction after coronary artery bypass surgery. Critical Care Medicine, 1998, 26, 1986-1990.	0.9	59
89	The evolving relation between star formation rate and stellar mass in the VIDEO survey since <i>>z</i> A=Â3. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2541-2558.	4.4	57
90	DYNAMICAL STRUCTURE OF THE MOLECULAR INTERSTELLAR MEDIUM IN AN EXTREMELY BRIGHT, MULTIPLY LENSED $\langle i \rangle z \langle i \rangle$ â% f 3 SUBMILLIMETER GALAXY DISCOVERED WITH $\langle i \rangle$ HERSCHEL $\langle i \rangle$. Astrophysical Journal Letters, 2011, 733, L12.	8.3	56

#	Article	IF	Citations
91	A new EXAFS investigation of local structural changes in amorphous and crystalline GeO ₂ at high pressure. Journal of Physics Condensed Matter, 2009, 21, 145403.	1.8	55
92	The HerMES SPIRE submillimeter local luminosity function. Astronomy and Astrophysics, 2010, 518, L20.	5.1	55
93	Radial distribution of gas and dust in spiral galaxies. Astronomy and Astrophysics, 2010, 518, L72.	5.1	55
94	HELP: a catalogue of 170 million objects, selected at 0.36–4.5 μm, from 1270Âdeg2 of prime extragalactic fields. Monthly Notices of the Royal Astronomical Society, 2019, 490, 634-656.	4.4	55
95	MID-INFRARED SPECTROSCOPY OF CANDIDATE ACTIVE GALACTIC NUCLEI-DOMINATED SUBMILLIMETER GALAXIES. Astrophysical Journal, 2010, 713, 503-519.	4.5	54
96	Automated Mining of the ALMA Archive in the COSMOS Field (A $<$ sup $>$ 3 $<$ /sup $>$ COSMOS). I. Robust ALMA Continuum Photometry Catalogs and Stellar Mass and Star Formation Properties for $\hat{a}^1/4700$ Galaxies at $z\hat{A}=\hat{A}0.5\hat{a}\in$ 6. Astrophysical Journal, Supplement Series, 2019, 244, 40.	7.7	54
97	<i>Herschel</i> -SPIRE, far-infrared properties of millimetre-bright and -faint radio galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L13-L18.	3.3	53
98	Quasars That Have Transitioned from Radio-quiet to Radio-loud on Decadal Timescales Revealed by VLASS and FIRST. Astrophysical Journal, 2020, 905, 74.	4.5	53
99	The SCUBA Half-Degree Extragalactic Survey (SHADES) – VIII. The nature of faint submillimetre galaxies in SHADES, SWIRE and SXDF surveys. Monthly Notices of the Royal Astronomical Society, 2008, 387, 247-267.	4.4	52
100	Negative thermal expansion in CuCl: An extended x-ray absorption fine structure study. Physical Review B, 2007, 75, .	3.2	51
101	HELP: the <i>Herschel</i> Extragalactic Legacy Project. Monthly Notices of the Royal Astronomical Society, 2021, 507, 129-155.	4.4	51
102	A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: techno-economic-environmental assessment. Environmental Science and Pollution Research, 2017, 24, 17383-17393.	5.3	50
103	The Lockman Hole Project: new constraints on the sub-mJy source counts from a wide-area 1.4ÂGHz mosaic. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4548-4565.	4.4	50
104	Groundwater Prediction Using Machine-Learning Tools. Algorithms, 2020, 13, 300.	2.1	50
105	First results from HerMES on the evolution of the submillimetre luminosity function. Astronomy and Astrophysics, 2010, 518, L23.	5.1	49
106	HerMES: point source catalogues from Herschel-SPIRE observations IIâ~ Monthly Notices of the Royal Astronomical Society, 2014, 444, 2870-2883.	4.4	49
107	MAGPHYS+photo-z: Constraining the Physical Properties of Galaxies with Unknown Redshifts. Astrophysical Journal, 2019, 882, 61.	4.5	49
108	GALAXY COUNTS AT 24 νm IN THE SWIRE FIELDS. Astronomical Journal, 2008, 135, 1050-1056.	4.7	47

#	Article	IF	CITATIONS
109	Specific star formation and the relation to stellar mass from 0 < <i>z</i> < 2 as seen in the far-infrared at 70 and $160 < i > \hat{l} \frac{1}{4} < i > m$. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	47
110	<i>Herschel</i> photometric observations of the nearby low metallicity irregular galaxy NGC 6822. Astronomy and Astrophysics, 2010, 518, L55.	5.1	47
111	Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries. Waste Management, 2013, 33, 2762-2770.	7.4	47
112	Observation of H $<$ sub $>$ 2 $<$ /sub $>$ 0 in a strongly lensed $<$ i $>$ Herschel $<$ /i $>$ -ATLAS source at $<$ i $>$ z $<$ /i $>$ = 2.3. Astronomy and Astrophysics, 2011, 530, L3.	5.1	46
113	Revised SWIRE photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1958-1967.	4.4	46
114	The SCUBA Half Degree Extragalactic Survey (SHADES) – IX. The environment, mass and redshift dependence of star formation. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1907-1921.	4.4	44
115	Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES surveyâ [*] Monthly Notices of the Royal Astronomical Society, 2010, 409, 2-11.	4.4	43
116	Herschel/HerMES: the X-ray-infrared correlation for star-forming galaxies at $z\hat{a}^{-1}/41$. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2239-2252.	4.4	43
117	The dust morphology of the elliptical Galaxy M 86 with SPIRE. Astronomy and Astrophysics, 2010, 518, L45.	5.1	42
118	PHOTOMETRY AND PHOTOMETRIC REDSHIFT CATALOGS FOR THE LOCKMAN HOLE DEEP FIELD. Astrophysical Journal, Supplement Series, 2012, 198, 1.	7.7	41
119	fine structure study of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathMĹ"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> CuScO </mml:mtext> </mml:mrow> <mml:xmlns:mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> CuLaO </mml:mtext> </mml:mrow> <mml:mrow> <mml:mrow< td=""><td>3.2</td><td>40</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:xmlns:mml="http:></mml:msub></mml:mrow></mml:math>	3.2	40
120	Physical Review B, 2009, 79, REDSHIFT DETERMINATION AND CO LINE EXCITATION MODELING FOR THE MULTIPLY LENSED GALAXY HLSW-01. Astrophysical Journal, 2011, 733, 29.	4.5	40
121	Temporal, regional and cellular selectivity of neonatal alteration of the thyroid state on neurochemical maturation in the rat. Experimental Brain Research, 1991, 83, 555-61.	1.5	39
122	Galaxy evolution from deep multi-wavelength infrared surveys: a prelude to <i>Herschel</i> Astronomy and Astrophysics, 2010, 517, A74.	5.1	38
123	Measures of star formation rates from infrared (<i>Herschel</i>) and UV (<i>GALEX</i>) emissions of galaxies in the HerMES fields. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L1-L6.	3.3	37
124	The FIRST Classifier: compact and extended radio galaxy classification using deep Convolutional Neural Networks. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2085-2093.	4.4	37
125	The temperature dependence of the far-infrared–radio correlation in the Herschel-ATLASâ~ Monthly Notices of the Royal Astronomical Society, 2014, 445, 2232-2243.	4.4	36
126	Reversal of malignant phenotype in human osteosarcoma cells transduced with the alkaline phosphatase gene. Bone, 2000, 26, 215-220.	2.9	35

#	Article	IF	Citations
127	S-100 Protein and Neuron-Specific Enolase as Markers of Subclinical Cerebral Damage after Cardiac Surgery: Preliminary Observation of a 6-Month Follow-Up Study. European Neurology, 2001, 45, 151-159.	1.4	35
128	The roles of star formation and AGN activity of IRS sources in the HerMES fields. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2426-2437.	4.4	35
129	The HerMES submillimetre local and low-redshift luminosity functions. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1999-2023.	4.4	35
130	Mapping the interstellar medium in galaxies with <i> Herschel </i> /SPIRE. Astronomy and Astrophysics, 2010, 518, L62.	5.1	34
131	<i>HERSCHEL</i> OBSERVATIONS OF FAR-INFRARED COOLING LINES IN INTERMEDIATE REDSHIFT (ULTRA)-LUMINOUS INFRARED GALAXIES. Astrophysical Journal Letters, 2014, 781, L15.	8.3	34
132	The star-formation history of the Universe with the SKA. , 2015, , .		34
133	Linking the X-ray and infrared properties of star-forming galaxies at zÂ<Â1.5â~ Monthly Notices of the Royal Astronomical Society, 2014, 443, 3728-3740.	4.4	33
134	Herschelphotometric observations of the low metallicity dwarf galaxy NGC 1705. Astronomy and Astrophysics, 2010, 518, L58.	5.1	32
135	Testing the starburst/AGN connection with SWIRE X-ray/70 $\hat{1}\frac{1}{4}$ m sources. Monthly Notices of the Royal Astronomical Society, 2009, 399, 663-670.	4.4	30
136	The AGN content in luminous infrared galaxies at $z\hat{a}^{1/4}$ 2 from a global SED analysis including Herschel data. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1909-1920.	4.4	30
137	<i>Herschel</i> >-SPIRE observations of the disturbed galaxy NGC 4438. Astronomy and Astrophysics, 2010, 518, L63.	5.1	29
138	Extreme submillimetre starburst galaxies. Astronomy and Astrophysics, 2018, 619, A169.	5.1	29
139	HerMES: SPIRE emission from radio-selected active galactic nucleiâ* Monthly Notices of the Royal Astronomical Society, 2011, 413, 1777-1786.	4.4	28
140	HerMES: detection of cosmic magnification of submillimetre galaxies using angular cross-correlationa~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 596-601.	4.4	28
141	Negative thermal expansion in crystals with the zincblende structure: an EXAFS study of CdTe. Journal of Physics Condensed Matter, 2012, 24, 115403.	1.8	28
142	THE COMPLEX PHYSICS OF DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFTS AS REVEALED BY <i>HERSCHEL </i> AND <i>SPITZER </i> Astrophysical Journal, 2013, 762, 108.	4. 5	28
143	Variability-selected active galactic nuclei in the VST-SUDARE/VOICE survey of the COSMOS field. Astronomy and Astrophysics, 2015, 574, A112.	5.1	28
144	A Major Involvement of the Cardiovascular System in Patients Affected by Marfan Syndrome: Novel Mutations in Fibrillin 1 Gene. Journal of Molecular and Cellular Cardiology, 1997, 29, 1877-1884.	1.9	27

#	Article	IF	CITATIONS
145	The exstrophy-epispadias complex: is aesthetic appearance important?. BJU International, 2004, 93, 1062-1068.	2.5	27
146	The European Large Area ISO Survey – IX. The 90-νm luminosity function from the Final Analysis sample. Monthly Notices of the Royal Astronomical Society, 2004, 355, 813-818.	4.4	27
147	Continuous Suture Technique and Impairment of the Atrioventricular Conduction After Aortic Valve Replacement. Journal of Cardiac Surgery, 2010, 15, 418-422.	0.7	27
148	<i>Herschel</i> -SPIRE FTS spectroscopy of the carbon-rich objects AFGLÂ2688, AFGLÂ618, and NGCÂ7027. Astronomy and Astrophysics, 2010, 518, L144.	5.1	27
149	MODELING OF THE HERMES SUBMILLIMETER SOURCE LENSED BY A DARK MATTER DOMINATED FOREGROUND GROUP OF GALAXIES. Astrophysical Journal, 2011, 738, 125.	4.5	27
150	Wide-field optical imaging on ELAIS N1, ELAIS N2, First Look Survey and Lockman Hole: observations and source catalogues. Monthly Notices of the Royal Astronomical Society, 2011, 416, 927-940.	4.4	27
151	The galaxy–halo connection in the VIDEO survey at 0.5 < <i>z</i> < 1.7. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2618-2631.	4.4	27
152	HerMES: LYMAN BREAK GALAXIES INDIVIDUALLY DETECTED AT 0.7 \hat{a} $\hat{\omega}$ $\frac{1}{2}$ \hat{z} \hat{a} $\hat{\omega}$ $\frac{1}{2}$ 2.0 IN GOODS-N WITH HERSCH Astrophysical Journal Letters, 2011, 734, L12.	iel <i>į</i> spire.	26
153	COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE <i>>z</i> = 1. Astrophysical Journal, 2012, 760, 72.	4.5	26
154	Design and performance assessment of a rice husk fueled stove for household cooking in a typical sub-Saharan setting. Energy for Sustainable Development, 2014, 23, 15-24.	4.5	25
155	Evolution of the far-infrared luminosity functions in the Spitzer Wide-area Infrared Extragalactic Legacy Survey. Monthly Notices of the Royal Astronomical Society, 2013, 428, 291-306.	4.4	24
156	An Application of Multi-band Forced Photometry to One Square Degree of SERVS: Accurate Photometric Redshifts and Implications for Future Science. Astrophysical Journal, Supplement Series, 2017, 230, 9.	7.7	24
157	SUDARE-VOICE variability-selection of active galaxies in the <i>Chandra </i> Deep Field South and the SERVS/SWIRE region. Astronomy and Astrophysics, 2015, 579, A115.	5.1	24
158	MICHTEE: are giant radio galaxies more common than we thought?. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3833-3845.	4.4	24
159	HerMES: <i>Herschel</i> -SPIRE observations of Lyman break galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L7-L12.	3.3	23
160	Structural changes in amorphous <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext></mml:mtext></mml:mrow><mml:mrow>high pressure. Physical Review B, 2010, 81, .</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	2 <i>8/2</i> nml:m	n 2 3/mml:ms
161	CNN architecture comparison for radio galaxy classification. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1828-1846.	4.4	23
162	Properties of FIRBACK-ELAIS 175-Âm sources in the ELAIS N2 region. Monthly Notices of the Royal Astronomical Society, 2005, 361, 1352-1374.	4.4	22

#	Article	IF	Citations
163	Local behaviour of negative thermal expansion materials. Nuclear Instruments & Methods in Physics Research B, 2006, 246, 180-183.	1.4	22
164	ULTRA STEEP SPECTRUM RADIO SOURCES IN THE LOCKMAN HOLE: <i>SERVS </i> IDENTIFICATIONS AND REDSHIFT DISTRIBUTION AT THE FAINTEST RADIO FLUXES. Astrophysical Journal, 2011, 743, 122.	4.5	22
165	Red, redder, reddest: SCUBA-2 imaging of colour-selected Herschel sources. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1099-1119.	4.4	22
166	A new noninvasive method for estimation of pulmonary arterial pressure in mitral stenosis. American Journal of Cardiology, 1991, 68, 398-401.	1.6	21
167	On the origin of M81 group extended dust emission. Monthly Notices of the Royal Astronomical Society, 2010, 409, 102-108.	4.4	21
168	HerMES: A STATISTICAL MEASUREMENT OF THE REDSHIFT DISTRIBUTION OF HERSCHEL-SPIRE SOURCES USING THE CROSS-CORRELATION TECHNIQUE. Astrophysical Journal, 2012, 753, 23.	4.5	21
169	Deep GMRT 610 MHz observations of the ELAIS N1 field: catalogue and source counts. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1127-1145.  Pressure-induced∢mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	4.4	21
170	display="inline"> <mml:mrow><mml:mtext>Fe</mml:mtext><mml:mo>â†"</mml:mo><mml:mtext>Cu</mml:mtext> valence exchange and its structural consequences: High-pressure studies of delafossite<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>3.2</td><td>20</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></mml:mrow>	3.2	20
171	Physical Review B, 2010, 81, . SCUBA-2 observations of candidate starbursting protoclusters selected by Planck and Herschel-SPIRE. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3840-3859.	4.4	20
172	A wide-area GMRT 610-MHz survey of ELAIS N1 field. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5383-5394.	4.4	20
173	HELP: The Herschel Extragalactic Legacy Project and The Coming of Age of Multi-wavelength Astrophysics. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 71-77.	0.3	20
174	Final analysis of ELAIS 15- \hat{l}_4 m observations: method, reduction and catalogue. Monthly Notices of the Royal Astronomical Society, 2005, 358, 397-418.	4.4	19
175	Deep Extragalactic VIsible Legacy Survey (DEVILS): consistent multiwavelength photometry for the DEVILS regions (COSMOS, XMMLSS,Âand ECDFS). Monthly Notices of the Royal Astronomical Society, 2021, 506, 256-287.	4.4	19
176	Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample. Astronomy and Astrophysics, 2017, 598, A50.	5.1	19
177	A <i>Spitzer</i> survey of Deep Drilling Fields to be targeted by the Vera C. Rubin Observatory Legacy Survey of Space and Time. Monthly Notices of the Royal Astronomical Society, 2020, 501, 892-910.	4.4	19
178	High pressure transition in amorphous As2S3 studied by EXAFS. Journal of Chemical Physics, 2009, 131, 224502.	3.0	18
179	The JCMT Nearby Galaxies Legacy Survey - IV. Velocity dispersions in the molecular interstellar medium in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	18
180	CLUSTERING OF STAR-FORMING GALAXIES DETECTED IN MID-INFRARED WITH THE <i>SPITZER </i> SURVEY. Astrophysical Journal, 2012, 751, 126.	4.5	18

#	Article	IF	CITATIONS
181	The Stripe 82 1–2ÂGHz Very Large Array Snapshot Survey: multiwavelength counterparts. Monthly Notices of the Royal Astronomical Society, 2018, 480, 707-721.	4.4	18
182	Cosmic evolution of star-forming galaxies to $\langle i \rangle z \langle i \rangle$ a $\% f$ 1.8 in the faint low-frequency radio source population. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5911-5924.	4.4	18
183	Radio spectral properties of star-forming galaxies in the MIGHTEE-COSMOS field and their impact on the far-infrared-radio correlation. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2643-2658.	4.4	18
184	The SCUBA HAlf Degree Extragalactic Survey (SHADES) - V. Submillimetre properties of near-infrared-selected galaxies in the Subaru/XMM-Newton deep field. Monthly Notices of the Royal Astronomical Society, 2007, 381, 1154-1168.	4.4	17
185	Herschel-ATLAS: statistical properties of Galactic cirrus in the GAMA-9 Hour Science Demonstration Phase Field. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	17
186	HerMES: THE FAR-INFRARED EMISSION FROM DUST-OBSCURED GALAXIES. Astrophysical Journal, 2013, 775, 61.	4.5	17
187	An Overview of the Dwarf Galaxy Survey (PASP, 125, 600, [2013])â€"Corrigendum. Publications of the Astronomical Society of the Pacific, 2014, 126, 1079-1080.	3.1	17
188	Optically variable AGN in the three-year VST survey of the COSMOS field. Astronomy and Astrophysics, 2019, 627, A33.	5.1	17
189	A Comparison of Photometric Redshift Techniques for Large Radio Surveys. Publications of the Astronomical Society of the Pacific, 2019, 131, 108004.	3.1	17
190	The Spitzer Extragalactic Representative Volume Survey (SERVS): Survey Definition and Goals (PASP,) Tj ETQqC	0 0 rgBT /	Overlock 10 T
191	ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4939-4952.	4.4	16
192	Infrared luminosity functions and dust mass functions in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2912-2924.	4.4	16
193	The bright end of the infrared luminosity functions and the abundance of hyperluminous infrared galaxies. Astronomy and Astrophysics, 2021, 648, A8.	5.1	16
194	The XMM-SERVS Survey: XMM-Newton Point-source Catalogs for the W-CDF-S and ELAIS-S1 Fields. Astrophysical Journal, Supplement Series, 2021, 256, 21.	7.7	16
105			
195	HerMES: SPIRE detection of high-redshift massive compact galaxies in GOODS-N field. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L19-L24.	3.3	15
196	HerMES: SPIRE detection of high-redshift massive compact galaxies in GOODS-N field. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L19-L24. Tracing the Evolution of Dust Obscured Star Formation and Accretion Back to the Reionisation Epoch with <i>SPICA</i> Publications of the Astronomical Society of Australia, 2017, 34, .	3.3	15
	of the Royal Astronomical Society: Letters, 2010, 409, L19-L24. Tracing the Evolution of Dust Obscured Star Formation and Accretion Back to the Reionisation Epoch		

#	Article	IF	CITATIONS
199	The MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Survey., 2018,,.		14
200	Lenses In VoicE (LIVE): searching for strong gravitational lenses in the VOICE@VST survey using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2021, 510, 500-514.	4.4	14
201	FIRBACK. Astronomy and Astrophysics, 2005, 440, 5-22.	5.1	13
202	A new approach to multiwavelength associations of astronomical sources. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1062-1074.	4.4	13
203	The central region of spiral galaxies as seen byHerschel. Astronomy and Astrophysics, 2010, 518, L64.	5.1	13
204	The nature of the faint low-frequency radio source population. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1156-1168.	4.4	13
205	All-sky visible and near infrared space astrometry. Experimental Astronomy, 2021, 51, 783-843.	3.7	13
206	Large-scale structure in the ELAIS S1 Survey. Monthly Notices of the Royal Astronomical Society, 2004, 352, 44-48.	4.4	12
207	THE <i>SPITZER</i> EXTRAGALACTIC REPRESENTATIVE VOLUME SURVEY: THE ENVIRONMENTS OF HIGH- <i>z</i> SDSS QUASI-STELLAR OBJECTS. Astrophysical Journal, 2011, 735, 123.	4.5	12
208	Constraints to healthcare waste treatment in low-income countries – a case study from Somaliland. Waste Management and Research, 2012, 30, 572-575.	3.9	12
209	THE HOST GALAXIES OF MICRO-JANSKY RADIO SOURCES. Astronomical Journal, 2015, 150, 87.	4.7	12
210	Unbiased Large Spectroscopic Surveys of Galaxies Selected by SPICA Using Dust Bands. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	12
211	Deep ASKAP EMU Survey of the GAMA23 field: properties of radio sources. Monthly Notices of the Royal Astronomical Society, 2022, 512, 6104-6121.	4.4	12
212	The European Large ArealSOSurvey: optical identifications of $15-\hat{1}\frac{1}{4}$ m and 1.4 -GHz sources in N1 and N2. Monthly Notices of the Royal Astronomical Society, 2005, 358, 333-340.	4.4	11
213	Clustering of galaxies at 3.6 Âm in the Spitzer Wide-area Infrared Extragalactic legacy survey. Monthly Notices of the Royal Astronomical Society, 2007, 381, 1437-1449.	4.4	11
214	Detailed modelling of a large sample of Herschel sources in the Lockman Hole: identification of cold dust and of lensing candidates through their anomalous SEDsa~ Monthly Notices of the Royal Astronomical Society, 2014, 445, 3848-3861.	4.4	11
215	Polypropylene Suture Fracture. Annals of Thoracic Surgery, 1985, 39, 400.	1.3	10
216	Cigarette Smoking and Pauci-Immune Extracapillary Glomerulo-nephritis with ANCA-Associated Idiopathic Systemic Vasculitis., 2000, 130, 103-108.		10

#	Article	IF	CITATIONS
217	The faint radio source population at 15.7ÂGHz – II. Multi-wavelength properties. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4245-4264.	4.4	10
218	THE SPITZER-IRAC/MIPS EXTRAGALACTIC SURVEY (SIMES) IN THE SOUTH ECLIPTIC POLE FIELD. Astrophysical Journal, Supplement Series, 2016, 223, 1.	7.7	10
219	Photometric redshifts for galaxies in the Spitzer Extragalactic Representative Volume Survey (SERVS). Monthly Notices of the Royal Astronomical Society, 2019, 483, 3168-3195.	4.4	10
220	A random forest-based selection of optically variable AGN in the VST-COSMOS field. Astronomy and Astrophysics, 2021, 645, A103.	5.1	10
221	New constraints on the 1.4ÂGHz source number counts and luminosity functions in the Lockman Hole field. Monthly Notices of the Royal Astronomical Society, 2020, 500, 22-33.	4.4	10
222	The effect of captopril on peripheral hemodynamics in patients with esential hypertension: Comparison between oral and sublingual administration. Cardiovascular Drugs and Therapy, 1990, 4, 751-754.	2.6	9
223	The AGN fraction of submm-selected galaxies and contributions to the submm/mm-wave extragalactic background light. Astronomy and Astrophysics, 2010, 514, A10.	5.1	9
224	HerMES: The submillimeter spectral energy distributions of Herschel/SPIRE-detected galaxies. Astronomy and Astrophysics, 2010, 518, L32.	5.1	9
225	<i>SPITZER</i> IMAGING OF STRONGLY LENSED <i>HERSCHEL</i> SELECTED DUSTY STAR-FORMING GALAXIES. Astrophysical Journal, 2015, 814, 17.	4.5	9
226	The development of environmental visions and strategies at the municipal level: Case studies from the county of ŖstergŶtland in Sweden. Journal of Environmental Management, 2016, 179, 76-82.	7.8	9
227	HELP: star formation as a function of galaxy environment with <i>Herschel </i> herschel li>. Monthly Notices of the Royal Astronomical Society, 2016, 462, 277-289.	4.4	9
228	Finding bright z ≥ 6.6 Ly α emitters with lensing: prospects for Euclid. Monthly Notices of the Royal Astronomical Society, 2017, 470, 5007-5013.	4.4	9
229	Weak-lensing study in VOICE survey $\hat{a} \in \mathbb{N}$ I. Shear measurement. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3858-3872.	4.4	9
230	Extending the variability selection of active galactic nuclei in the W-CDF-S and SERVS/SWIRE region. Astronomy and Astrophysics, 2020, 634, A50.	5.1	9
231	Ascending aortic false aneurysm following cannulation for perfusion Thorax, 1976, 31, 234-237.	5.6	8
232	Potentiating Effect of Galanin on GHRH-Induced GH Release. Comparison Between Old and Young Subjects. Hormone and Metabolic Research, 1996, 28, 101-104.	1.5	8
233	A study of the 15-Âm quasars in the ELAIS N1 and N2 fields. Monthly Notices of the Royal Astronomical Society, 2004, 354, 961-970.	4.4	8
234	The Deep SPIRE HerMES Survey: spectral energy distributions and their astrophysical indications at high redshift. Monthly Notices of the Royal Astronomical Society, 2010, 409, 66-74.	4.4	8

#	Article	IF	CITATIONS
235	A pilot study for the SCUBA-2 â€ ⁻ All-Skyâ€ ^{-™} Survey. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1950-1960.	4.4	8
236	Automated cross-identifying radio to infrared surveys using the lrpy algorithm: a case study. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4523-4537.	4.4	8
237	Spectroscopic confirmation and modelling of two lensed quadruple quasars in the Dark Energy Survey public footprint. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5086-5095.	4.4	8
238	The Role of Environment in Galaxy Evolution in the SERVS Survey. I. Density Maps and Cluster Candidates. Astrophysical Journal, 2020, 889, 185.	4.5	8
239	A population of extreme mid-to-near-infrared sources: Obscured AGN and dusty starbursts. Astronomy and Astrophysics, 2004, 427, 795-801.	5.1	8
240	EXAFS studies of lattice dynamics and thermal expansion. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3085-3088.	0.8	7
241	Spectroscopic follow-up of 70-νm sources inâ€,Spitzerâ€,Wide-area Infrared Extragalactic Legacy Survey. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1738-1750.	4.4	7
242	HerMES: disentangling active galactic nuclei and star formation in the radio source population. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4111-4127.	4.4	7
243	The evolution of the low-frequency radio AGN population to $\langle i \rangle z \langle j \rangle \hat{A} = 1.5$ in the ELAIS N1 field. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4685-4702.	4.4	7
244	Exploring AGN Activity over Cosmic Time with the SKA. , 2015, , .		7
245	NUDENS: A Nilsson-Bardeen-Cooper-Schrieffer code at finite nuclear temperature. Computer Physics Communications, 1983, 29, 375-390.	7.5	6
246	Acute and Chronic Nitrendipine Administration in Essential Hypertension. Journal of Cardiovascular Pharmacology, 1992, 19, S49-S52.	1.9	6
247	Thermal effects on EXAFS: Ensemble averages and real-space approach. Physical Review B, 2005, 72, .	3.2	6
248	The far-infrared–radio correlation in MS0451-03. Monthly Notices of the Royal Astronomical Society, 2015, 447, 168-177.	4.4	6
249	The SCUBA-2 Ambitious Sky Survey: a catalogue of beam-sized sources in the Galactic longitude range 120°–140°. Monthly Notices of the Royal Astronomical Society, 2017, 468, 250-260.	4.4	6
250	A Multi-band Forced-photometry Catalog in the ELAIS-S1 Field. Research Notes of the AAS, 2021, 5, 31.	0.7	6
251	Basic Statistical Estimation Outperforms Machine Learning in Monthly Prediction of Seasonal Climatic Parameters. Atmosphere, 2021, 12, 539.	2.3	6
252	SAGACE: THE SPECTROSCOPIC ACTIVE GALAXIES AND CLUSTERS EXPLORER. , 2012, , .		6

#	Article	IF	CITATIONS
253	IgA Nephropathy Complicating Diabetic Glomerulosclerosis. Nephron, 1998, 80, 488-489.	1.8	5
254	Weak Lensing Study in VOICE Survey II: Shear Bias Calibrations. Monthly Notices of the Royal Astronomical Society, $0, \dots$	4.4	5
255	SCUBA-2 overdensities associated with candidate protoclusters selected from <i>Planck</i> data. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5985-5991.	4.4	5
256	Photometric Redshifts in the W-CDF-S and ELAIS-S1 Fields Based on Forced Photometry from 0.36 to 4.5 Microns. Research Notes of the AAS, 2021, 5, 56.	0.7	5
257	The SKA view of the Interplay between SF and AGN Activity and its role in Galaxy Evolution. , 2015, , .		5
258	The Spitzer Data Fusion: Contents, Construction and Applications to Galaxy Evolution Studies. , 2016, , .		5
259	LADUMA: Looking at the Distant Universe with the MeerKAT Array. , 2018, , .		5
260	Rainfall Prediction Using Machine Learning Models: Literature Survey. Studies in Computational Intelligence, 2022, , 75-108.	0.9	5
261	Storage-ring FEL amplifiers and electron beam longitudinal mode-damping times. Physical Review E, 1998, 57, 7153-7161.	2.1	4
262	Negative thermal expansion and local dynamics. Journal of Physics: Conference Series, 2009, 190, 012025.	0.4	4
263	A Subarcsecond Near-infrared View of Massive Galaxies at zÂ>Â1 with Gemini Multi-conjugate Adaptive Optics. Astrophysical Journal, 2018, 864, 8.	4.5	4
264	The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES). II. Enhanced Nuclear Accretion Rate in Galaxy Groups at z $\hat{a}^{-1}/4$ 0.2. Astrophysical Journal, 2018, 857, 64.	4.5	4
265	Effect of the environment on star formation activity and stellar mass for star-forming galaxies in the COSMOS field. Monthly Notices of the Royal Astronomical Society, 2020, 499, 948-956.	4.4	4
266	Revealing the cold dust in low-metallicity environments <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2015, 573, C1.	5.1	4
267	The star-formation rates of QSOs. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	4
268	Water monitoring and treatment for drinking purposes in 2004 tsunami affected areaâ€"Ban Nam Khem, Phang Nga, Thailand. Environmental Monitoring and Assessment, 2008, 147, 191-198.	2.7	3
269	Evaluation of drinking water treatment and quality in Takua Pa, Thailand. Environmental Monitoring and Assessment, 2008, 142, 345-358.	2.7	3
270	Mass balance of emerging organic micropollutants in a small wastewater treatment plant. WIT Transactions on Ecology and the Environment, 2012, , .	0.0	3

#	Article	IF	Citations
271	The VOICE Survey: VST Optical Imaging of the CDFS and ES1 Fields., 2017,,.		3
272	Comparison of Phenolic Content and Antioxidant Activity for Fermented and Unfermented Rooibos Samples Extracted with Water and Methanol. Plants, 2022, 11, 16.	3.5	3
273	Local lattice dynamics and negative thermal expansion in crystals. Journal of Physics: Conference Series, 2007, 92, 012153.	0.4	2
274	ON THE NATURE OF THE FIRST GALAXIES SELECTED AT 350 μm. Astrophysical Journal, 2009, 706, 319-327.	4.5	2
275	A New Search for Variability-Selected Active Galaxies Within the VST SUDARE-VOICE Survey: The Chandra Deep Field South and the SERVS-SWIRE Area. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 275-279.	0.3	2
276	A Comparison of Deep Learning Architectures for Optical Galaxy Morphology Classification., 2021,,.		2
277	Looking at the Distant Universe with the MeerKAT Array: Discovery of a Luminous OH Megamaser at z & gt; 0.5. Astrophysical Journal Letters, 2022, 931, L7.	8.3	2
278	Exchange-correlation effects on the electronic stopping power of slow protons in metals. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1996, 18, 69-74.	0.4	1
279	The Formation & Evolution of Galaxies making up the CIRB: FIR/Submm Extragalactic Surveys from Dome C. EAS Publications Series, 2008, 33, 183-192.	0.3	1
280	Background radiations and the cosmic photon-photon opacity. , 2009, , .		1
281	EXAFS and negative thermal expansion in CdTe. Journal of Physics: Conference Series, 2009, 190, 012066.	0.4	1
282	Variability and transient search in the SUDARE–VOICE field: a new method to extract the light curves. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3825-3837.	4.4	1
283	Variability-Selected AGNs in the VST-SUDARE Survey of the COSMOS Field. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 269-274.	0.3	1
284	Submillimetre photometry of 323 nearby galaxies from the <i>Herschel </i> Reference Survey <i>(Corrigendum) </i> . Astronomy and Astrophysics, 2013, 550, C1.	5.1	1
285	AKARI DEEP FIELD SOUTH: SPECTROSCOPIC OBSERVATIONS OF INFRARED SOURCES. Publications of the Korean Astronomical Society, 2017, 32, 281-285.	0.0	1
286	Final Analysis of ELAIS 15 μm Observations., 0,, 467-468.		0
287	Spectroscopic Active Galaxies and Clusters Explorer. , 2009, , .		0
288	Resolving the FIR/SMM Cosmic Background and thus Studying the High-Redshift Universe from Concordia Station. EAS Publications Series, 2010, 40, 429-436.	0.3	0

#	Article	IF	Citations
289	Cosmological Surveys in the FIR/Sub-mm. EAS Publications Series, 2010, 40, 417-427.	0.3	O
290	Multi-wavelength Studies of Cluster Star Forming Galaxies at $z\hat{a}^{1/4}0.54$. Proceedings of the International Astronomical Union, 2012, 8, 337-337.	0.0	0
291	The HerMES Local Luminosity Function. Proceedings of the International Astronomical Union, 2015, 11 ,	0.0	0
292	GAIA Galaxy Survey: A Multi-Colour Galaxy Survey with GAIA. EAS Publications Series, 2002, 2, 313-319.	0.3	0
293	Spectroscopic Cosmological Surveys in the Far-IR. , 2009, , .		0
294	Pressure-induced crystallographic transitions related to electronic/magnetic phenomena in iron(II,III) compounds. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s122-s123.	0.3	0
295	Ultra Steep Spectrum Radio Sources in the Lockman Hole: SERVS Identifications and Redshift Distribution at the Faintest Radio Fluxes. Thirty Years of Astronomical Discovery With UKIRT, 2012, , 97-100.	0.3	0
296	Algebraic Coupled-Channels Formalism for Heavy Ions near the Coulomb Barrier. Lecture Notes in Physics, 1997, , 255-272.	0.7	0
297	HELP-ing Extragalactic Surveys : The Herschel Extragalactic Legacy Project and the Coming of Age of Multi-Wavelength Astrophysics. , 2016, , .		0
298	AKARI-NEP: EFFECTS OF AGN PRESENCE ON SFR ESTIMATES OF GALAXIES. Publications of the Korean Astronomical Society, 2017, 32, 239-244.	0.0	0
299	Environmental effects on star formation main sequence in the COSMOS field. Proceedings of the International Astronomical Union, 2019, 15, 339-341.	0.0	0
300	Powerful quasars with young jets in multiâ€epoch radio surveys. Astronomische Nachrichten, 2021, 342, 1146.	1.2	0
301	Identification of Single Spectral Lines in Large Spectroscopic Surveys Using UMLAUT: an Unsupervised Machine-learning Algorithm Based on Unbiased Topology. Astrophysical Journal, Supplement Series, 2021, 257, 67.	7.7	0
302	Optimizing spectral stacking for 21-cm observations of galaxies: accuracy assessment and symmetrized stacking. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4205-4221.	4.4	0