Johan A Westerhuis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5625086/publications.pdf

Version: 2024-02-01

218381 66788 7,323 77 26 citations h-index papers

g-index 80 80 80 10712 docs citations times ranked citing authors all docs

78

#	Article	IF	CITATIONS
1	Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 2006, 7, 142.	1.2	1,836
2	Assessment of PLSDA cross validation. Metabolomics, 2008, 4, 81-89.	1.4	1,178
3	Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 2012, 8, 3-16.	1.4	622
4	Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4531-4538.	3.3	448
5	Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 2014, 10, 361-374.	1.4	406
6	Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics, 2010, 6, 119-128.	1.4	362
7	ASCA: analysis of multivariate data obtained from an experimental design. Journal of Chemometrics, 2005, 19, 469-481.	0.7	201
8	A framework for sequential multiblock component methods. Journal of Chemometrics, 2003, 17, 323-337.	0.7	190
9	Data-processing strategies for metabolomics studies. TrAC - Trends in Analytical Chemistry, 2011, 30, 1685-1698.	5.8	164
10	Multilevel Data Analysis of a Crossover Designed Human Nutritional Intervention Study. Journal of Proteome Research, 2008, 7, 4483-4491.	1.8	158
11	Statistical validation of megavariate effects in ASCA. BMC Bioinformatics, 2007, 8, 322.	1.2	137
12	Variable selection and validation in multivariate modelling. Bioinformatics, 2019, 35, 972-980.	1.8	122
13	ANOVA–principal component analysis and ANOVA–simultaneous component analysis: a comparison. Journal of Chemometrics, 2011, 25, 561-567.	0.7	119
14	Multiway multiblock component and covariates regression models. Journal of Chemometrics, 2000, 14, 301-331.	0.7	92
15	Phenotyping Tea Consumers by Nutrikinetic Analysis of Polyphenolic End-Metabolites. Journal of Proteome Research, 2009, 8, 3317-3330.	1.8	89
16	Deflation in multiblock PLS. Journal of Chemometrics, 2001, 15, 485-493.	0.7	81
17	Discriminant Q2 (DQ2) for improved discrimination in PLSDA models. Metabolomics, 2008, 4, 293-296.	1.4	69
18	Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnology, 2014, 14, 22.	1.7	55

#	Article	IF	CITATIONS
19	Monitoring of batch processes using spectroscopy. AICHE Journal, 2002, 48, 2283-2297.	1.8	53
20	PARAFASCA: ASCA combined with PARAFAC for the analysis of metabolic fingerprinting data. Journal of Chemometrics, 2008, 22, 114-121.	0.7	52
21	Harmonization of quality metrics and power calculation in multi-omic studies. Nature Communications, 2020, 11, 3092.	5.8	43
22	Variable importance in latent variable regression models. Journal of Chemometrics, 2014, 28, 615-622.	0.7	42
23	Modelling of spectroscopic batch process data using grey models to incorporate external information. Journal of Chemometrics, 2001, 15, 101-121.	0.7	38
24	StandardizedQ-statistic for improved sensitivity in the monitoring of residuals in MSPC. Journal of Chemometrics, 2000, 14, 335-349.	0.7	34
25	Lipidomic Response to Coffee Consumption. Nutrients, 2018, 10, 1851.	1.7	32
26	Effect of strigolactones on recruitment of the rice root-associated microbiome. FEMS Microbiology Ecology, 2022, 98, .	1.3	29
27	Metabolomics data exploration guided by prior knowledge. Analytica Chimica Acta, 2009, 651, 173-181.	2.6	28
28	Exploring the analysis of structured metabolomics data. Chemometrics and Intelligent Laboratory Systems, 2009, 98, 88-96.	1.8	27
29	STATegra, a comprehensive multi-omics dataset of B-cell differentiation in mouse. Scientific Data, 2019, 6, 256.	2.4	26
30	Multiâ€way analysis of flux distributions across multiple conditions. Journal of Chemometrics, 2009, 23, 406-420.	0.7	23
31	Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data. BMC Systems Biology, 2014, 8, S2.	3.0	23
32	Contribution towards a Metabolite Profile of the Detoxification of Benzoic Acid through Glycine Conjugation: An Intervention Study. PLoS ONE, 2016, 11, e0167309.	1.1	23
33	New Figures of Merit for Comprehensive Functional Genomics Data: The Metabolomics Case. Analytical Chemistry, 2011, 83, 3267-3274.	3.2	22
34	Selecting the number of factors in principal component analysis by permutation testingâ€"Numerical and practical aspects. Journal of Chemometrics, 2017, 31, e2937.	0.7	22
35	Principal component analysis of binary genomics data. Briefings in Bioinformatics, 2019, 20, 317-329.	3.2	21
36	Repeated measures ASCA+ for analysis of longitudinal intervention studies with multivariate outcome data. PLoS Computational Biology, 2021, 17, e1009585.	1.5	21

#	Article	IF	Citations
37	Population-based nutrikinetic modeling of polyphenol exposure. Metabolomics, 2014, 10, 1059-1073.	1.4	20
38	Integration of omics data to unravel root microbiome recruitment. Current Opinion in Biotechnology, 2021, 70, 255-261.	3.3	20
39	Grey component analysis. Journal of Chemometrics, 2007, 21, 474-485.	0.7	19
40	The geometry of ASCA. Journal of Chemometrics, 2008, 22, 464-471.	0.7	19
41	iTOP: inferring the topology of omics data. Bioinformatics, 2018, 34, i988-i996.	1.8	19
42	Near-Infrared Spectroscopic Monitoring of a Series of Industrial Batch Processes Using a Bilinear Grey Model. Applied Spectroscopy, 2003, 57, 1007-1019.	1,2	18
43	Separating common from distinctive variation. BMC Bioinformatics, 2016, 17, 195.	1.2	18
44	The 1H-NMR-based metabolite profile of acute alcohol consumption: A metabolomics intervention study. PLoS ONE, 2018, 13, e0196850.	1.1	18
45	Increased comparability between RNA-Seq and microarray data by utilization of gene sets. PLoS Computational Biology, 2020, 16, e1008295.	1.5	18
46	Tracyâ€"Widom statistic for the largest eigenvalue of autoscaled real matrices. Journal of Chemometrics, 2011, 25, 644-652.	0.7	17
47	Analyzing metabolomics-based challenge tests. Metabolomics, 2015, 11, 50-63.	1.4	17
48	Gut microbial activity as influenced by fiber digestion: dynamic metabolomics in an in vitro colon simulator. Metabolomics, 2016 , 12 , 1 .	1.4	17
49	GC–MS-based urinary organic acid profiling reveals multiple dysregulated metabolic pathways following experimental acute alcohol consumption. Scientific Reports, 2018, 8, 5775.	1.6	17
50	Simplivariate Models: Ideas and First Examples. PLoS ONE, 2008, 3, e3259.	1.1	16
51	Application of NMR-based metabonomics suggests a relationship between betaine absorption and elevated creatine plasma concentrations in catheterised sows. British Journal of Nutrition, 2012, 107, 1603-1615.	1.2	15
52	Model Selection and Optimal Sampling in High-Throughput Experimentation. Analytical Chemistry, 2004, 76, 3171-3178.	3.2	14
53	Performance assessment and improvement of control charts for statistical batch process monitoring. Statistica Neerlandica, 2006, 60, 339-360.	0.9	14
54	Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data. PLoS ONE, 2011, 6, e20747.	1.1	13

#	Article	IF	CITATIONS
55	Common and distinct variation in data fusion of designed experimental data. Metabolomics, 2020, 16, 2.	1.4	13
56	Kinetic and mechanistic studies on the Heck reaction using real-time near infrared spectroscopy. Physical Chemistry Chemical Physics, 2003, 5, 4455-4460.	1.3	12
57	Weighted sparse principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2019, 195, 103875.	1.8	10
58	Maximum likelihood scaling (MALS). Journal of Chemometrics, 2006, 20, 120-127.	0.7	9
59	Logistic principal component analysis via non-convex singular value thresholding. Chemometrics and Intelligent Laboratory Systems, 2020, 204, 104089.	1.8	9
60	Fusing metabolomics data sets with heterogeneous measurement errors. PLoS ONE, 2018, 13, e0195939.	1.1	7
61	Separating common (global and local) and distinct variation in multiple mixed types data sets. Journal of Chemometrics, 2020, 34, e3197.	0.7	7
62	Metabolomics variable selection and classification in the presence of observations below the detection limit using an extension of ERp. BMC Bioinformatics, 2017, 18, 83.	1.2	6
63	Elevation of fatty acid desaturaseÂ2 in esophageal adenocarcinoma increases polyunsaturated lipids and may exacerbate bile acidâ€induced DNA damage. Clinical and Translational Medicine, 2022, 12, e810.	1.7	6
64	Network Identification of Hormonal Regulation. PLoS ONE, 2014, 9, e96284.	1.1	5
65	Variable selection for binary classification using error rate p-values applied to metabolomics data. BMC Bioinformatics, 2016, 17, 33.	1.2	5
66	Training for translation between disciplines: a philosophy for life and data sciences curricula. Bioinformatics, 2018, 34, i4-i12.	1.8	5
67	Heterofusion: Fusing genomics data of different measurement scales. Journal of Chemometrics, 2021, 35, e3200.	0.7	5
68	A beginner's guide to integrating multi-omics data from microbial communities. Biochemist, 2022, 44, 23-29.	0.2	5
69	<i>Divide et impera</i> : How disentangling common and distinctive variability in multiset data analysis can aid industrial process troubleshooting and understanding. Journal of Chemometrics, 2021, 35, e3266.	0.7	4
70	Generalized simultaneous component analysis of binary and quantitative data. Journal of Chemometrics, 2021, 35, e3312.	0.7	3
71	Systematic selection of competing metabolomics methods in a metabolite-sensory relationship study. Metabolomics, 2021, 17, 77.	1.4	3
72	Editorial–data analysis in metabolomics. Metabolomics, 2012, 8, 1-2.	1.4	2

#	Article	IF	CITATIONS
73	A technical note on challenge tests in human volunteers for multidimensional phenotyping. Chemometrics and Intelligent Laboratory Systems, 2014, 136, 81-84.	1.8	2
74	Targeted proteomic response to coffee consumption. European Journal of Nutrition, 2020, 59, 1529-1539.	1.8	2
75	Topology of Transcriptional Regulatory Networks: Testing and Improving. PLoS ONE, 2012, 7, e40082.	1.1	1
76	Using Petri nets for experimental design in a multi-organ elimination pathway. Computers in Biology and Medicine, 2015, 63, 19-27.	3.9	1
77	Why orthogonal rotations might be not so orthogonal as you think. Journal of Chemometrics, 2017, 31, e2920.	0.7	1