Isabel Belo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5625028/publications.pdf Version: 2024-02-01

ICAREL RELO

#	Article	IF	CITATIONS
1	<i>Yarrowia lipolytica</i> as a biorefinery platform for effluents and solid wastes valorization – challenges and opportunities. Critical Reviews in Biotechnology, 2022, 42, 163-183.	5.1	25
2	Degradation of lignocellulosic matrix of oilseed cakes by solidâ€state fermentation: fungi screening for enzymes production and antioxidants release. Journal of the Science of Food and Agriculture, 2022, 102, 1550-1560.	1.7	18
3	Application of fermented brewer's spent grain extract in plant-based diets for European seabass juveniles. Aquaculture, 2022, 552, 738013.	1.7	5
4	Bio-oil production for biodiesel industry by Yarrowia lipolytica from volatile fatty acids in two-stage batch culture. Applied Microbiology and Biotechnology, 2022, 106, 2869-2881.	1.7	17
5	Valorization of Brewer's Spent Grain Using Biological Treatments and its Application in Feeds for European Seabass (Dicentrarchus labrax). Frontiers in Bioengineering and Biotechnology, 2022, 10, 732948.	2.0	8
6	Application of Fermented Brewer's Spent Grain Extract in Plant-Based Diets Improves Pre- and Post-mortem Oxidative Status of European Seabass (Dicentrarchus labrax). Aquaculture Nutrition, 2022, 2022, 1-12.	1.1	2
7	Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100407.	3.2	60
8	Candida tropicalis as a Promising Oleaginous Yeast for Olive Mill Wastewater Bioconversion. Energies, 2021, 14, 640.	1.6	20
9	Factors affecting microbial lipids production by Yarrowia lipolytica strains from volatile fatty acids: Effect of co-substrates, operation mode and oxygen. Journal of Biotechnology, 2021, 331, 37-47.	1.9	26
10	Valorization of crude glycerol as carbon source for the bioconversion of Lâ€phenylamine to 2â€phenylethanol by <i>Yarrowia</i> species. Journal of Chemical Technology and Biotechnology, 2021, 96, 2940-2949.	1.6	8
11	Highly aerated cultures boost gluconic acid production by the yeast-like fungus Aureobasidium pullulans. Biochemical Engineering Journal, 2021, 175, 108133.	1.8	17
12	Co-management of agro-industrial wastes by solid-state fermentation for the production of bioactive compounds. Industrial Crops and Products, 2021, 172, 113990.	2.5	18
13	Polyunsaturated fatty acids production by solidâ€state fermentation on polyurethane foam by <i>Mortierella alpina</i> . Biotechnology Progress, 2021, 37, e3113.	1.3	5
14	Solid-state fermented brewer's spent grain enzymatic extract increases in vitro and in vivo feed digestibility in European seabass. Scientific Reports, 2021, 11, 22946.	1.6	14
15	Microbial valorization of waste cooking oils for valuable compounds production – a review. Critical Reviews in Environmental Science and Technology, 2020, 50, 2583-2616.	6.6	52
16	Improved lignocellulolytic enzyme production and antioxidant extraction using solidâ€state fermentation of olive pomace mixed with winery waste. Biofuels, Bioproducts and Biorefining, 2020, 14, 78-91.	1.9	47
17	Bio-enrichment of oilseed cakes by Mortierella alpina under solid-state fermentation. LWT - Food Science and Technology, 2020, 134, 109981.	2.5	11
18	Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Industrial Crops and Products, 2019, 137, 315-322.	2.5	87

ISABEL BELO

#	Article	IF	CITATIONS
19	Sequential bioprocessing of Ulva rigida to produce lignocellulolytic enzymes and to improve its nutritional value as aquaculture feed. Bioresource Technology, 2019, 281, 277-285.	4.8	26
20	NIR spectroscopy applied to the determination of 2â€phenylethanol and <scp>l</scp> â€phenylalanine concentrations in culture medium of <i>Yarrowia lipolytica</i> . Journal of Chemical Technology and Biotechnology, 2019, 94, 812-818.	1.6	10
21	Waste Cooking Oils as Feedstock for Lipase and Lipidâ€Rich Biomass Production. European Journal of Lipid Science and Technology, 2019, 121, 1800188.	1.0	72
22	Mediterranean agroâ€industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solidâ€state fermentation. Journal of the Science of Food and Agriculture, 2018, 98, 5248-5256.	1.7	33
23	Lipase production by solidâ€state fermentation of olive pomace in trayâ€type and pressurized bioreactors. Journal of Chemical Technology and Biotechnology, 2018, 93, 1312-1319.	1.6	8
24	Microbial lipids and added value metabolites production by Yarrowia lipolytica from pork lard. Journal of Biotechnology, 2018, 265, 76-85.	1.9	75
25	Generation of Flavors and Fragrances Through Biotransformation and De Novo Synthesis. Food and Bioprocess Technology, 2018, 11, 2217-2228.	2.6	65
26	Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, 2017, 102, 268-277.	1.8	52
27	Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor. Bioprocess and Biosystems Engineering, 2017, 40, 1123-1132.	1.7	43
28	Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073. Chemical Papers, 2016, 70, .	1.0	22
29	Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresource Technology, 2016, 214, 737-746.	4.8	89
30	Combined bioremediation and enzyme production by Aspergillus sp. in olive mill and winery wastewaters. International Biodeterioration and Biodegradation, 2016, 110, 16-23.	1.9	46
31	Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica. World Journal of Microbiology and Biotechnology, 2016, 32, 169.	1.7	60
32	Olive pomace valorization by <i>Aspergillus</i> species: lipase production using solidâ€state fermentation. Journal of the Science of Food and Agriculture, 2016, 96, 3583-3589.	1.7	36
33	Oxygen mass transfer impact on citric acid production by Yarrowia lipolytica from crude glycerol. Biochemical Engineering Journal, 2016, 110, 35-42.	1.8	39
34	Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media. Journal of Biotechnology, 2016, 217, 22-30.	1.9	20
35	Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by <i>Aspergillus uvarum</i> Using a Packed-Bed Bioreactor. Journal of Agricultural and Food Chemistry, 2015, 63, 9306-9314.	2.4	42
36	Production of γâ€decalactone by <i>Yarrowia lipolytica</i> : insights into experimental conditions and operating mode optimization. Journal of Chemical Technology and Biotechnology, 2015, 90, 559-565.	1.6	36

ISABEL BELO

#	Article	IF	CITATIONS
37	Biocatalysis in Micellar Systems. RSC Green Chemistry, 2015, , 178-196.	0.0	2
38	Integrated Use of Residues from Olive Mill and Winery for Lipase Production by Solid State Fermentation with Aspergillus sp Applied Biochemistry and Biotechnology, 2014, 172, 1832-1845.	1.4	40
39	Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation. Biomass Conversion and Biorefinery, 2014, 4, 201-209.	2.9	24
40	Enhanced heterologous protein production in <scp>P</scp> ichia pastoris under increased air pressure. Biotechnology Progress, 2014, 30, 1040-1047.	1.3	14
41	Overâ€pressurized bioreactors: Application to microbial cell cultures. Biotechnology Progress, 2014, 30, 767-775.	1.3	23
42	Application of benzo[a]phenoxazinium chlorides in antimicrobial photodynamic therapy of Candida albicans biofilms. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 93-99.	1.7	29
43	Candida utilis metabolism and morphology under increased air pressure up to 12bar. Process Biochemistry, 2014, 49, 374-379.	1.8	9
44	An air-lift biofilm reactor for the production of Î ³ -decalactones by Yarrowia lipolytica. Process Biochemistry, 2014, 49, 1377-1382.	1.8	23
45	Comparison of Yarrowia lipolytica and Pichia pastoris Cellular Response to Different Agents of Oxidative Stress. Applied Biochemistry and Biotechnology, 2013, 170, 448-458.	1.4	15
46	Immobilization of Yarrowia lipolytica for Aroma Production from Castor Oil. Applied Biochemistry and Biotechnology, 2013, 169, 2202-2211.	1.4	41
47	Batch and fed-batch growth of Pichia pastoris under increased air pressure. Bioprocess and Biosystems Engineering, 2013, 36, 1267-1275.	1.7	8
48	Impact of Lipaseâ€Mediated Hydrolysis of Castor Oil on γâ€Decalactone Production by <i>Yarrowia lipolytica</i> . JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1131-1137.	0.8	30
49	Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess and Biosystems Engineering, 2013, 36, 285-291.	1.7	45
50	Oxygen Mass Transfer Rate in a Pressurized Labâ€Scale Stirred Bioreactor. Chemical Engineering and Technology, 2013, 36, 1779-1784.	0.9	15
51	Lipase Induction in <i>Yarrowia lipolytica</i> for Castor Oil Hydrolysis and Its Effect on γâ€Đecalactone Production. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1041-1047.	0.8	30
52	Fedâ€batch fermentation of olive mill wastewaters for lipase production. Journal of Chemical Technology and Biotechnology, 2012, 87, 1215-1218.	1.6	12
53	Fed-batch versus batch cultures of Yarrowia lipolytica for Î ³ -decalactone production from methyl ricinoleate. Biotechnology Letters, 2012, 34, 649-654.	1.1	48
54	Empirical modelling as an experimental approach to optimize lactone production. Catalysis Science and Technology, 2011, 1, 86.	2.1	14

ISABEL BELO

#	Article	IF	CITATIONS
55	Optimization of a colorimetric assay for yeast lipase activity in complex systems. Analytical Methods, 2011, 3, 1008.	1.3	34
56	Oil-in-water emulsions characterization by laser granulometry and impact on Î ³ -decalactone production in Yarrowia lipolytica. Biotechnology Letters, 2011, 33, 1601-1606.	1.1	13
57	Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Applied Microbiology and Biotechnology, 2011, 89, 535-547.	1.7	123
58	The use of methyl ricinoleate in lactone production byYarrowia lipolytica: Aspects of bioprocess operation that influence the overall performance. Biocatalysis and Biotransformation, 2010, 28, 227-234.	1.1	28
59	Adaptation of dinitrosalicylic acid method to microtiter plates. Analytical Methods, 2010, 2, 2046.	1.3	145
60	OLIVE MILL WASTEWATER AS A RENEWABLE RESOURCE. Environmental Engineering and Management Journal, 2010, 9, 319-325.	0.2	2
61	The use of olive mill wastewater by wild type <i>Yarrowia lipolytica</i> strains: medium supplementation and surfactant presence effect. Journal of Chemical Technology and Biotechnology, 2009, 84, 533-537.	1.6	43
62	Yarrowia lipolytica Growth Under Increased Air Pressure: Influence on Enzyme Production. Applied Biochemistry and Biotechnology, 2009, 159, 46-53.	1.4	45
63	Production of 3-hydroxy-γ-decalactone, the precursor of two decenolides with flavouring properties, by the yeast Yarrowia lipolytica. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 22-26.	1.8	32
64	Oxygen mass transfer to emulsions in a bubble column contactor. Chemical Engineering Journal, 2009, 152, 354-360.	6.6	36
65	Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresource Technology, 2009, 100, 3759-3763.	4.8	100
66	Oxygen mass transfer in a biphasic medium: Influence on the biotransformation of methyl ricinoleate into l³-decalactone by the yeast Yarrowia lipolytica. Biochemical Engineering Journal, 2007, 35, 380-386.	1.8	63
67	Decalactone Production by Yarrowia lipolytica under increased O2 Transfer Rates. Biotechnology Letters, 2005, 27, 1617-1621.	1.1	56
68	Morphological and physiological changes in Saccharomyces cerevisiae by oxidative stress from hyperbaric air. Journal of Biotechnology, 2005, 115, 397-404.	1.9	22
69	Fermentative capacity of baker's yeast exposed to hyperbaric stress. Biotechnology Letters, 2004, 26, 1237-1240.	1.1	11
70	Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Applied Microbiology and Biotechnology, 2004, 66, 318-324.	1.7	43
71	Growth and beta-galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure. Letters in Applied Microbiology, 2003, 37, 438-442.	1.0	49
72	Oxidative stress response of Kluyveromyces marxianus to hydrogen peroxide, paraquat and pressure. Applied Microbiology and Biotechnology, 2002, 58, 842-847.	1.7	47

#	Article	IF	CITATIONS
73	Air pressure effects on biomass yield of two different Kluyveromyces strains. Enzyme and Microbial Technology, 2000, 26, 756-762.	1.6	37
74	Physiological behaviour of Saccharomyces cerevisiaeunder increased air and oxygen pressures. Biotechnology Letters, 1997, 19, 703-708.	1.1	17