Yoshimitsu Hamano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/56248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of the adenylation domain from an ε-poly-l-lysine synthetase provides molecular mechanism for substrate specificity. Biochemical and Biophysical Research Communications, 2022, 596, 43-48.	2.1	6
2	Discovery of a Polyamino Acid Antibiotic Solely Comprising <scp>l</scp> -β-Lysine by Potential Producer Prioritization-Guided Genome Mining. ACS Chemical Biology, 2022, 17, 171-180.	3.4	3
3	Molecular and Mechanistic Characterization of PddB, the First PLP-Independent 2,4-Diaminobutyric Acid Racemase Discovered in an Actinobacterial D-Amino Acid Homopolymer Biosynthesis. Frontiers in Microbiology, 2021, 12, 686023.	3.5	0
4	tRNA-dependent amide bond–forming enzymes in peptide natural product biosynthesis. Current Opinion in Chemical Biology, 2020, 59, 164-171.	6.1	5
5	C-Methylation of S-adenosyl-L-Methionine Occurs Prior to Cyclopropanation in the Biosynthesis of 1-Amino-2-Methylcyclopropanecarboxylic Acid (Norcoronamic Acid) in a Bacterium. Biomolecules, 2020, 10, 775.	4.0	11
6	The Stereocontrolled Biosynthesis of Mirror-Symmetric 2,4-Diaminobutyric Acid Homopolymers Is Critically Governed by Adenylation Activations. ACS Chemical Biology, 2020, 15, 1964-1973.	3.4	11
7	Off-Loading Mechanism of Products in Polyunsaturated Fatty Acid Synthases. ACS Chemical Biology, 2020, 15, 651-656.	3.4	11
8	Enhancement of metabolic flux toward ε-poly-l-lysine biosynthesis by targeted inactivation of concomitant polyene macrolide biosynthesis in Streptomyces albulus. Journal of Bioscience and Bioengineering, 2020, 129, 558-564.	2.2	22
9	In vitro characterization of MitE and MitB: Formation of N-acetylglucosaminyl-3-amino-5-hydroxybenzoyl-MmcB as a key intermediate in the biosynthesis of antitumor antibiotic mitomycins. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2076-2078.	2.2	6
10	Moldable Material from ε-Poly-l-lysine and Lignosulfonate: Mechanical and Self-Healing Properties of a Bio-Based Polyelectrolyte Complex. ACS Omega, 2019, 4, 9756-9762.	3.5	10
11	Control Mechanism for Carbonâ€Chain Length in Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie, 2019, 131, 6677-6682.	2.0	2
12	Control Mechanism for Carbonâ€Chain Length in Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie - International Edition, 2019, 58, 6605-6610.	13.8	31
13	Draft Genome Sequence of the Most Traditional ε-Poly- <scp>l</scp> -Lysine Producer, Streptomyces albulus NBRC14147. Microbiology Resource Announcements, 2019, 8, .	0.6	4
14	Control Mechanism for <i>cis</i> Doubleâ€Bond Formation by Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie - International Edition, 2019, 58, 2326-2330.	13.8	33
15	Control Mechanism for <i>cis</i> Doubleâ€Bond Formation by Polyunsaturated Fattyâ€Acid Synthases. Angewandte Chemie, 2019, 131, 2348-2352.	2.0	3
16	Promotion Effect of Streptothricin on a Glucose Oxidase Enzymatic Reaction and Its Application to a Colorimetric Assay. Analytical Sciences, 2018, 34, 143-148.	1.6	4
17	Functional properties of anti-inflammatory substances from quercetin-treated <i>Bifidobacterium adolescentis</i> . Bioscience, Biotechnology and Biochemistry, 2018, 82, 689-697.	1.3	20
18	Functional analysis of methyltransferases participating in streptothricin-related antibiotic biosynthesis. Journal of Bioscience and Bioengineering, 2018, 125, 148-154.	2.2	1

Υοςηιμιτςυ Ηαμανό

#	Article	IF	CITATIONS
19	Partition of amines and lysine oligomers between organic solvent and water under a controlled interfacial potential difference. Journal of Electroanalytical Chemistry, 2018, 820, 97-102.	3.8	4
20	Antimicrobial Activity of ε-Poly- <scp>l</scp> -lysine after Forming a Water-Insoluble Complex with an Anionic Surfactant. Biomacromolecules, 2017, 18, 1387-1392.	5.4	37
21	Imaging mass spectrometry analysis of ubiquinol localization in the mouse brain following short-term administration. Scientific Reports, 2017, 7, 12990.	3.3	18
22	Colorimetric Microtiter Plate Assay of Polycationic Aminoglycoside Antibiotics in Culture Broth Using Amaranth. Analytical Sciences, 2017, 33, 499-503.	1.6	8
23	Colorimetric method to detect l̂µ-poly-l-lysine using glucose oxidase. Journal of Bioscience and Bioengineering, 2016, 122, 513-518.	2.2	9
24	tRNA-Dependent Aminoacylation of an Amino Sugar Intermediate in the Biosynthesis of a Streptothricin-Related Antibiotic. Applied and Environmental Microbiology, 2016, 82, 3640-3648.	3.1	16
25	Separation of Streptothricin Antibiotics from Culture Broth with Colorimetric Determination Using Dipicrylamine. Analytical Sciences, 2016, 32, 1101-1104.	1.6	5
26	Synthesis of (2S,3R,4R)-3,4-dihydroxyarginine and its inhibitory activity against nitric oxide synthase. Tetrahedron, 2016, 72, 5602-5611.	1.9	7
27	Colorimetric Detection of the Adenylation Activity in Nonribosomal Peptide Synthetases. Methods in Molecular Biology, 2016, 1401, 77-84.	0.9	14
28	Separation and Purification of ε-Poly-l-lysine with Its Colorimetric Determination Using Dipicrylamine. Analytical Sciences, 2015, 31, 1273-1277.	1.6	12
29	å¤çš"å^†æžåŒ–妿‰‹æ³•ã®ç¾ä»£å©ç"¶ç‰©åŒ–å¦ç"ç©¶ã;ã®æ´»ç"" 溶液å†ã,¤ªāf³å¹³è¡¡ã,'使ã;	,ã "õ≹õ ™.	Kag e ku To S <mark>ei</mark> l
30	lon-transfer voltammetry of streptothricin antibiotics with differently sized lysine oligomers at a nitrobenzene water interface. Journal of Electroanalytical Chemistry, 2015, 754, 143-147.	3.8	4
31	Heterologous Production of Hyaluronic Acid in an ε-Poly- <scp>l</scp> -Lysine Producer, Streptomyces albulus. Applied and Environmental Microbiology, 2015, 81, 3631-3640.	3.1	34
32	A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin. Nature Chemical Biology, 2015, 11, 71-76.	8.0	53
33	ε-Poly- <scp>l</scp> -Lysine Peptide Chain Length Regulated by the Linkers Connecting the Transmembrane Domains of ε-Poly- <scp>l</scp> -Lysine Synthetase. Applied and Environmental Microbiology, 2014, 80, 4993-5000.	3.1	27
34	Voltammetric study of the transfer of ε-poly-L-lysine at nitrobenzene water interface. Journal of Electroanalytical Chemistry, 2014, 719, 138-142.	3.8	6
35	Analytical Methods for the Detection and Purification of ε-Poly-L-lysine for Studying Biopolymer Synthetases, and Bioelectroanalysis Methods for Its Functional Evaluation. Analytical Sciences, 2014, 30, 17-24.	1.6	18
36	Mutational analysis of the three tandem domains of Îμ-poly-l-lysine synthetase catalyzing the l-lysine polymerization reaction. Journal of Bioscience and Bioengineering, 2013, 115, 523-526.	2.2	12

Υοςηιμιτςυ Ηαμανό

#	Article	IF	CITATIONS
37	NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Natural Product Reports, 2013, 30, 1087.	10.3	29
38	Colorimetric Determination of Pyrophosphate Anion and Its Application to Adenylation Enzyme Assay. Analytical Sciences, 2013, 29, 1095-1098.	1.6	20
39	Separation and Purification of ε-Poly-L-lysine from the Culture Broth Based on Precipitation with the Tetraphenylborate Anion. Analytical Sciences, 2012, 28, 1153-1157.	1.6	28
40	A stand-alone adenylation domain forms amide bonds in streptothricin biosynthesis. Nature Chemical Biology, 2012, 8, 791-797.	8.0	107
41	Molecular Breeding of a Fungus Producing a Precursor Diterpene Suitable for Semi-Synthesis by Dissection of the Biosynthetic Machinery. PLoS ONE, 2012, 7, e42090.	2.5	18
42	Assay of enzymes forming AMP+PPi by the pyrophosphate determination based on the formation of 18-molybdopyrophosphate. Analytical Biochemistry, 2012, 421, 308-312.	2.4	20
43	An Enzyme Catalyzing Oâ€Prenylation of the Glucose Moiety of Fusicoccin A, a Diterpene Glucoside Produced by the Fungus <i>Phomopsis amygdali</i> . ChemBioChem, 2012, 13, 566-573.	2.6	19
44	Occurrence, Biosynthesis, Biodegradation, and Industrial and Medical Applications of a Naturally Occurring Îμ-Poly- <scp>L</scp> -lysine. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1226-1233.	1.3	39
45	Detection of Biopolymer ϵ-poly-L-lysine with Molybdosilicate Anion for Screening of Synthetic Enzymes. International Journal of Polymer Analysis and Characterization, 2011, 16, 542-550.	1.9	14
46	Development of a recombinant ε-poly-L-lysine synthetase expression system to perform mutational analysis. Journal of Bioscience and Bioengineering, 2011, 111, 646-649.	2.2	17
47	Analysis of the <i>Lactobacillus</i> Metabolic Pathway. Applied and Environmental Microbiology, 2010, 76, 7299-7301.	3.1	15
48	Mechanism of ε-Poly- <scp>l</scp> -Lysine Production and Accumulation Revealed by Identification and Analysis of an ε-Poly- <scp>l</scp> -Lysine-Degrading Enzyme. Applied and Environmental Microbiology, 2010, 76, 5669-5675.	3.1	106
49	Biochemistry and Enzymology of Poly-Epsilon-l-Lysine Biosynthesis. Microbiology Monographs, 2010, , 23-44.	0.6	12
50	The Biological Function of the Bacterial Isochorismatase-Like Hydrolase SttH. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2494-2500.	1.3	16
51	Îμ-Poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nature Chemical Biology, 2008, 4, 766-772.	8.0	143
52	Selective toxicity alteration of a highly toxic antibiotic by an enzyme catalyzing antibiotic modification. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2008, 22, 50-55.	0.3	0
53	Desensitization of Feedback Inhibition of the Saccharomyces cerevisiae Î ³ -Glutamyl Kinase Enhances Proline Accumulation and Freezing Tolerance. Applied and Environmental Microbiology, 2007, 73, 4011-4019.	3.1	69
54	Construction of a Knockout Mutant of the Streptothricin-Resistance Gene in Streptomyces albulus by Electroporation. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2006, 20, 35-41.	0.3	9

Υοςηιμιτςυ Ηαμανό

#	Article	IF	CITATIONS
55	A Novel Enzyme Conferring Streptothricin Resistance Alters the Toxicity of Streptothricin D from Broad-spectrum to Bacteria-specific. Journal of Biological Chemistry, 2006, 281, 16842-16848.	3.4	28
56	Development of gene delivery systems for the É›-poly-L-lysine producer, Streptomyces albulus. Journal of Bioscience and Bioengineering, 2005, 99, 636-641.	2.2	29
57	Overexpression and Characterization of an Aminoglycoside 6'-N-Acetyltransferase with Broad Specificity from an Â-Poly-L-lysine Producer, Streptomyces albulus IFO14147. Journal of Biochemistry, 2004, 136, 517-524.	1.7	10
58	A New Approach for the Investigation of Isoprenoid Biosynthesis Featuring Pathway Switching, Deuterium Hyperlabeling, and1H NMR Spectroscopy. The Reaction Mechanism of a NovelStreptomycesDiterpene Cyclase. Journal of Organic Chemistry, 2003, 68, 5433-5438.	3.2	21
59	Biosynthesis and Structural Revision of Neomarinone. Organic Letters, 2003, 5, 4449-4452.	4.6	61
60	Interconversion of the Product Specificity of Type I Eubacterial Farnesyl Diphosphate Synthase and Geranylgeranyl Diphosphate Synthase through One Amino Acid Substitution. Journal of Biochemistry, 2003, 133, 83-91.	1.7	23
61	Functiona l Analysis of Eubacterial Diterpene Cyclases Responsible for Biosynthesis of a Diterpene Antibiotic, Terpentecin. Journal of Biological Chemistry, 2002, 277, 37098-37104.	3.4	82
62	Growth-phase Dependent Expression of the Mevalonate Pathway in a Terpenoid Antibiotic-producingStreptomycesStrain. Bioscience, Biotechnology and Biochemistry, 2002, 66, 808-819.	1.3	37
63	Eubacterial Diterpene Cyclase Genes Essential for Production of the Isoprenoid Antibiotic Terpentecin. Journal of Bacteriology, 2001, 183, 6085-6094.	2.2	84
64	Cloning of a Gene Cluster Encoding Enzymes Responsible for the Mevalonate Pathway from a Terpenoid-antibiotic-producing Streptomyces Strain. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1627-1635.	1.3	38
65	Development of a Self-Cloning System for <i>Actinomadura verrucosospora</i> and Identification of Polyketide Synthase Genes Essential for Production of the Angucyclic Antibiotic Pradimicin. Applied and Environmental Microbiology, 1999, 65, 2703-2709.	3.1	16
66	Cloning and Nucleotide Sequence of the Putative Polyketide Synthase Genes for Pradimicin Biosynthesis fromActinomadura hibisca. Bioscience, Biotechnology and Biochemistry, 1997, 61, 1445-1453.	1.3	33
67	Protoplasting and Regeneration of Strains Belonging to the Genus Actinomadura Nihon Hosenkin Gakkai Shi = Actinomycetologica, 1997, 11, 1-5.	0.3	3