Rakesh Agrawal

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5624601/rakesh-agrawal-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 178
 7,858
 42
 84

 papers
 citations
 h-index
 g-index

 186
 8,591
 6.1
 6.39

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
178	Analysis of enargite thin films synthesized from carbon-containing and novel carbon-free processing methods. <i>Materials Science in Semiconductor Processing</i> , 2022 , 143, 106512	4.3	Ο
177	Enabling fine-grain free 2-micron thick CISe/CIGSe film fabrication via a non-hydrazine based solution processing route. <i>Materials Advances</i> , 2022 , 3, 3293-3302	3.3	0
176	Toward Carbon Neutrality for Natural Gas Liquids Valorization from Shale Gas. <i>Industrial &</i> Engineering Chemistry Research, 2022 , 61, 4469-4474	3.9	
175	Solution Processed Fabrication of Selle Alloy Thin Films for Application in PV Devices. <i>ACS Applied Energy Materials</i> , 2022 , 5, 3275-3281	6.1	0
174	Direct Synthesis of Sulfide-Capped Nanoparticles for Carbon-Free Solution-Processed Photovoltaics. <i>ACS Applied Nano Materials</i> , 2021 , 4, 11466-11472	5.6	
173	Alternative Processing Sequence for Process Simplification, Cost Reduction, and Enhanced Light Olefin Recovery from Shale Gas. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 13893-13901	8.3	2
172	Novel use of dividing wall columns for intensification multicomponent batch distillations. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 164, 108400	3.7	1
171	Systematic Analysis Reveals Thermal Separations Are Not Necessarily Most Energy Intensive. <i>Joule</i> , 2021 , 5, 330-343	27.8	6
170	BEOL Compatible Indium-Tin-Oxide Transistors: Switching of Ultrahigh-Density 2-D Electron Gas Over 0.8 © 1014/cm2 at Oxide/Oxide Interface by the Change of Ferroelectric Polarization. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 3195-3199	2.9	5
169	A Simple Criterion for Feasibility of Heat Integration between Distillation Streams Based on Relative Volatilities. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 10286-10302	3.9	2
168	Methods to assess numerous distillation schemes for binary mixtures. <i>Chemical Engineering Research and Design</i> , 2021 , 172, 1-20	5.5	1
167	Solution Phase Growth and Ion Exchange in Microassemblies of Lead Chalcogenide Nanoparticles. <i>ACS Omega</i> , 2021 , 6, 21350-21358	3.9	2
166	Fast Determination of the Lignin Monomer Compositions of Genetic Variants of Poplar Fast Pyrolysis/Atmospheric Pressure Chemical Ionization Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 2546-2551	3.5	O
165	Alternative ordering of process hierarchy for more efficient and cost-effective valorization of shale resources. <i>Cell Reports Physical Science</i> , 2021 , 2, 100581	6.1	2
164	Optimal design of membrane cascades for gaseous and liquid mixtures via MINLP. <i>Journal of Membrane Science</i> , 2021 , 636, 119514	9.6	3
163	Potassium Treatments for Solution-Processed Cu(In,Ga)(S,Se)2 Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 4821-4830	6.1	9
162	Sustainable production of ammonia fertilizers from biomass. <i>Biofuels, Bioproducts and Biorefining</i> , 2020 , 14, 725-733	5.3	2

(2019-2020)

161	Hybrid Ligand Exchange of Cu(In,Ga)S2 Nanoparticles for Carbon Impurity Removal in Solution-Processed Photovoltaics. <i>Chemistry of Materials</i> , 2020 , 32, 5091-5103	9.6	12
160	Misconceptions about efficiency and maturity of distillation. AICHE Journal, 2020, 66, e16294	3.6	10
159	Classification and Comparison of Dividing Walls for Distillation Columns. <i>Processes</i> , 2020 , 8, 699	2.9	6
158	Synthesis and characterization of semiconducting sinnerite (Cu6As4S9) thin films. <i>MRS Communications</i> , 2020 , 10, 188-193	2.7	1
157	Sustainable Photovoltaics. <i>Lecture Notes in Energy</i> , 2020 , 25-85	0.4	
156	Analyzing and Tuning the Chalcogen-Amine-Thiol Complexes for Tailoring of Chalcogenide Syntheses. <i>Inorganic Chemistry</i> , 2020 , 59, 8240-8250	5.1	6
155	Nanosecond carrier lifetimes in solution-processed enargite (Cu3AsS4) thin films. <i>Applied Physics Letters</i> , 2020 , 117, 162102	3.4	4
154	Indium-Tin-Oxide Transistors with One Nanometer Thick Channel and Ferroelectric Gating. <i>ACS Nano</i> , 2020 , 14, 11542-11547	16.7	39
153	Chemical engineering for a solar economy (2017 P. V. Danckwerts Lecture). <i>Chemical Engineering Science</i> , 2019 , 210, 115215	4.4	4
152	Exploring the Reaction Mechanisms of Fast Pyrolysis of Xylan Model Compounds via Tandem Mass Spectrometry and Quantum Chemical Calculations. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 9149-915	7.8	9
151	A Cu3PS4 nanoparticle hole selective layer for efficient inverted perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4604-4610	13	18
150	Process intensification in multicomponent distillation: A review of recent advancements. <i>Chemical Engineering Research and Design</i> , 2019 , 147, 122-145	5.5	31
149	Liquid assisted grain growth in solution processed Cu(In,Ga)(S,Se)2. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 195, 12-23	6.4	15
148	An MINLP formulation for the optimization of multicomponent distillation configurations. <i>Computers and Chemical Engineering</i> , 2019 , 125, 13-30	4	16
147	Global optimization of multicomponent distillation configurations: Global minimization of total cost for multicomponent mixture separations. <i>Computers and Chemical Engineering</i> , 2019 , 126, 249-262	4	12
146	Lead Chalcogenide Nanoparticles and Their Size-Controlled Self-Assemblies for Thermoelectric and Photovoltaic Applications. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1242-1252	5.6	15
145	Investigating Chemistry of Metal Dissolution in AmineThiol Mixtures and Exploiting It toward Benign Ink Formulation for Metal Chalcogenide Thin Films. <i>Chemistry of Materials</i> , 2019 , 31, 5674-5682	9.6	15
144	Global minimization of total exergy loss of multicomponent distillation configurations. <i>AICHE Journal</i> , 2019 , 65, e16737	3.6	5

143	Versatile Colloidal Syntheses of Metal Chalcogenide Nanoparticles from Elemental Precursors Using Amine-Thiol Chemistry. <i>Chemistry of Materials</i> , 2019 , 31, 9087-9097	9.6	19	
142	Reaction pathways and optoelectronic characterization of single-phase Ag2ZnSnS4 nanoparticles. <i>Journal of Materials Research</i> , 2019 , 34, 3810-3818	2.5	4	
141	110th Anniversary: Thermal Coupling via Heat Transfer: A Potential Route to Simple Distillation Configurations with Lower Heat Duty. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2167	1-24678	87	
140	Slot Die Coating of CIGS Nanoparticle Inks for Scalable Solution Processed Photovoltaics 2019 ,		1	
139	Optoelectronic Characterization of Emerging Solar Absorber Cu3AsS4 2019 ,		1	
138	Sustainable co-production of food and solar power to relax land-use constraints. <i>Nature Sustainability</i> , 2019 , 2, 972-980	22.1	17	
137	Minimum energy of multicomponent distillation systems using minimum additional heat and mass integration sections. <i>AICHE Journal</i> , 2018 , 64, 3410-3418	3.6	11	
136	Toward supplying food, energy, and water demand: Integrated solar desalination process synthesis with power and hydrogen coproduction. <i>Resources, Conservation and Recycling</i> , 2018 , 133, 331-342	11.9	30	
135	A systematic method to synthesize all dividing wall columns for n-component separation: Part II. <i>AICHE Journal</i> , 2018 , 64, 660-672	3.6	22	
134	A systematic method to synthesize all dividing wall columns for n-component separation B art I. <i>AICHE Journal</i> , 2018 , 64, 649-659	3.6	26	
133	Optimal Multicomponent Distillation Column Sequencing: Software and Case Studies. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 223-228	0.6	2	
132	Land Availability, Utilization, and Intensification for a Solar Powered Economy. <i>Computer Aided Chemical Engineering</i> , 2018 , 44, 1915-1920	0.6		
131	Pure phase synthesis of CuPS and CuPSCl for semiconductor applications RSC Advances, 2018, 8, 3409	94-33 /1 10)14	
130	Valorization of Shale Gas Condensate to Liquid Hydrocarbons through Catalytic Dehydrogenation and Oligomerization. <i>Processes</i> , 2018 , 6, 139	2.9	31	
129	Role of annealing atmosphere on the crystal structure and composition of tetrahedritellennantite alloy nanoparticles. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10538-10546	7.1	5	
128	Short-Cut Methods versus Rigorous Methods for Performance-Evaluation of Distillation Configurations. <i>Industrial & Distillation Configurations</i> . <i>Industrial & Distillation Chemistry Research</i> , 2018 , 57, 7726-7731	3.9	14	
127	Strategy to synthesize integrated solar energy coproduction processes with optimal process intensification. Case study: Efficient solar thermal hydrogen production. <i>Computers and Chemical Engineering</i> , 2017 , 105, 328-347	4	12	
126	Synthesis of efficient solar thermal power cycles for baseload power supply. <i>Energy Conversion and Management</i> , 2017 , 133, 486-497	10.6	17	

(2016-2017)

125	Synthesis and Characterization of Cu3(Sb1\(\text{MAsx}\))S4 Semiconducting Nanocrystal Alloys with Tunable Properties for Optoelectronic Device Applications. <i>Chemistry of Materials</i> , 2017 , 29, 573-578	9.6	13
124	Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials. <i>Advanced Energy Materials</i> , 2017 , 7, 1700167	21.8	74
123	Directing solar photons to sustainably meet food, energy, and water needs. <i>Scientific Reports</i> , 2017 , 7, 3133	4.9	18
122	Metastable defect response in CZTSSe from admittance spectroscopy. <i>Applied Physics Letters</i> , 2017 , 111, 142105	3.4	14
121	Improving efficiencies of Cu2ZnSnS4 nanoparticle based solar cells on flexible glass substrates. <i>Thin Solid Films</i> , 2017 , 642, 110-116	2.2	20
120	Initial Products and Reaction Mechanisms for Fast Pyrolysis of Synthetic G-Lignin Oligomers with ☐ 4 Linkages via On-Line Mass Spectrometry and Quantum Chemical Calculations. ChemistrySelect, 2017 , 2, 7185-7193	1.8	6
119	Speciation of CuCl and CuCl Thiol-Amine Solutions and Characterization of Resulting Films: Implications for Semiconductor Device Fabrication. <i>Inorganic Chemistry</i> , 2017 , 56, 14396-14407	5.1	20
118	Solution-processed copper arsenic sulfide thin films for photovoltaic applications. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6913-6916	7.1	10
117	Fabrication of Copper Arsenic Sulfide Thin Films from Nanoparticles for Application in Solar Cells 2017 ,		2
116	High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization. <i>Journal of Catalysis</i> , 2016 , 344, 535-552	7.3	47
115	Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm. <i>AICHE Journal</i> , 2016 , 62, 2071-2086	3.6	36
114	Solution-based synthesis and characterization of earth abundant Cu3(As,Sb)Se4 nanocrystal alloys: towards scalable room-temperature thermoelectric devices. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2198-2204	13	16
113	A commentary on the US policies for efficient large scale renewable energy storage systems: Focus on carbon storage cycles. <i>Energy Policy</i> , 2016 , 88, 477-484	7.2	22
112	Metal-metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices. <i>Chemical Communications</i> , 2016 , 52, 5007-10	5.8	42
111	Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 145, 342-348	6.4	93
110	Thermal coupling links to liquid-only transfer streams: An enumeration method for new FTC dividing wall columns. <i>AICHE Journal</i> , 2016 , 62, 1200-1211	3.6	17
109	Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu2ZnSnSe4. <i>Journal of Applied Physics</i> , 2016 , 119, 014505	2.5	73
108	Inkjet printed Cu(In,Ga)S2 nanoparticles for low-cost solar cells. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	18

107	The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells. <i>Applied Physics Letters</i> , 2016 , 109, 021102	3.4	27
106	Solution-processed sulfur depleted Cu(In, Ga)Se2 solar cells synthesized from a monoamine l ithiol solvent mixture. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7390-7397	13	51
105	Controlled Grain Growth for High Performance Nanoparticle-Based Kesterite Solar Cells. <i>Chemistry of Materials</i> , 2016 , 28, 7703-7714	9.6	62
104	A direct solution deposition approach to CdTe thin films. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9167	- 9 . 1 71	17
103	A Versatile Solution Route to Efficient Cu2ZnSn(S,Se)4 Thin-Film Solar Cells. <i>Chemistry of Materials</i> , 2015 , 27, 2114-2120	9.6	73
102	The role of interparticle heterogeneities in the selenization pathway of Cuanan nanoparticle thin films: a real-time study. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7128-7134	7.1	17
101	Synthesis and Characterization of Copper Arsenic Sulfide Nanocrystals from Earth Abundant Elements for Solar Energy Conversion. <i>Chemistry of Materials</i> , 2015 , 27, 2290-2293	9.6	19
100	Synthesis of CZTSSe Thin Films from Nanocrystal Inks 2015 , 239-270		5
99	Solution-based synthesis and purification of zinc tin phosphide nanowires. <i>Nanoscale</i> , 2015 , 7, 19317-23	37.7	3
98	A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass. <i>Green Chemistry</i> , 2015 , 17, 1492-1499	10	299
97	Improved performance of Ge-alloyed CZTGeSSe thin-film solar cells through control of elemental losses. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 376-384	6.8	161
96	9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 654-659	6.8	191
95	Oxygen removal from intact biomass to produce liquid fuel range hydrocarbons via fast-hydropyrolysis and vapor-phase catalytic hydrodeoxygenation. <i>Green Chemistry</i> , 2015 , 17, 178-183	10	78
94	An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters. <i>Journal of Materials Research</i> , 2015 , 30, 3710-3716	2.5	9
93	Mass spectrometric studies of fast pyrolysis of cellulose. <i>European Journal of Mass Spectrometry</i> , 2015 , 21, 321-6	1.1	7
92	Integrated Solar Thermal Hydrogen and Power Coproduction Process for Continuous Power Supply and Production of Chemicals. <i>Computer Aided Chemical Engineering</i> , 2015 , 37, 2291-2296	0.6	4
91	Round-the-clock power supply and a sustainable economy via synergistic integration of solar thermal power and hydrogen processes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 15821-6	11.5	12
90	A New Framework for Combining a Condenser and Reboiler in a Configuration To Consolidate Distillation Columns. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 10449-10464	3.9	8

(2014-2015)

89	Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 1550-1556	6.8	92	
88	Fast pyrolysis of 13C-labeled cellobioses: gaining insights into the mechanisms of fast pyrolysis of carbohydrates. <i>Journal of Organic Chemistry</i> , 2015 , 80, 1909-14	4.2	31	
87	Tailoring Biomass for Biochemical, Chemical or Thermochemical Catalytic Conversion. <i>FASEB Journal</i> , 2015 , 29, 485.3	0.9		
86	Modified basic distillation configurations with intermediate sections for energy savings. <i>AICHE Journal</i> , 2014 , 60, 1091-1097	3.6	5	
85	Cu2ZnSn(S,Se)4 solar cells from inks of heterogeneous Cu2nBnB nanocrystals. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 123, 189-196	6.4	33	
84	Kesterite Cu2ZnSn(S,Se)4 Absorbers Converted from Metastable, Wurtzite-Derived Cu2ZnSnS4 Nanoparticles. <i>Chemistry of Materials</i> , 2014 , 26, 3530-3534	9.6	49	
83	High-pressure fast-pyrolysis, fast-hydropyrolysis and catalytic hydrodeoxygenation of cellulose: production of liquid fuel from biomass. <i>Green Chemistry</i> , 2014 , 16, 792	10	85	
82	From shale gas to renewable energy based transportation solutions. <i>Energy Policy</i> , 2014 , 67, 499-507	7.2	11	
81	Continuous baseload renewable power using chemical refrigeration cycles. <i>Computers and Chemical Engineering</i> , 2014 , 71, 591-601	4	1	
80	Synthesis of (CuInS2)0.5(ZnS)0.5 Alloy Nanocrystals and Their Use for the Fabrication of Solar Cells via Selenization. <i>Chemistry of Materials</i> , 2014 , 26, 4060-4063	9.6	13	
79	Conceptual Design of Zeotropic Distillation Processes 2014 , 271-303		6	
78	Limiting and achievable efficiencies for solar thermal hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 62-75	6.7	14	
77	Uninterrupted renewable power through chemical storage cycles. <i>Current Opinion in Chemical Engineering</i> , 2014 , 5, 29-36	5.4	15	
76	Synergistic Biomass and Natural Gas Conversion to Liquid Fuel with Reduced CO2 Emissions. <i>Computer Aided Chemical Engineering</i> , 2014 , 525-530	0.6	4	
75	Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1 \blacksquare)4 and Cu2Zn(SnyGe1 \blacksquare)(SxSe1 \blacksquare)4. <i>Journal of Applied Physics</i> , 2014 , 115, 234504	2.5	57	
74	Thermal coupling links to liquid-only transfer streams: A path for new dividing wall columns. <i>AICHE Journal</i> , 2014 , 60, 2949-2961	3.6	41	
73	Synthesis of augmented biofuel processes using solar energy. AICHE Journal, 2014, 60, 2533-2545	3.6	12	
72	Compositional Inhomogeneity of Multinary Semiconductor Nanoparticles: A Case Study of Cu2ZnSnS4. <i>Chemistry of Materials</i> , 2014 , 26, 6955-6962	9.6	24	

71	2014,		3
70	Continuous power supply from a baseload renewable power plant. <i>Applied Energy</i> , 2014 , 122, 83-93	10.7	36
69	Global optimization of multicomponent distillation configurations: 1. Need for a reliable global optimization algorithm. <i>AICHE Journal</i> , 2013 , 59, 971-981	3.6	22
68	Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 64-71	6.8	187
67	Sun-to-Fuel Assessment of Routes for Fixing CO2 as Liquid Fuel. <i>Industrial & amp; Engineering Chemistry Research</i> , 2013 , 52, 5136-5144	3.9	46
66	Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 18281-9	3.6	79
65	High efficiency Cu2ZnSnS4 nanocrystal ink solar cells through improved nanoparticle synthesis and selenization 2013 ,		1
64	New multicomponent distillation configurations with simultaneous heat and mass integration. <i>AICHE Journal</i> , 2013 , 59, 272-282	3.6	21
63	Universal statistics of parasitic shunt formation in solar cells, and its implications for cell to module efficiency gap. <i>Energy and Environmental Science</i> , 2013 , 6, 782	35.4	28
62	On-line mass spectrometric methods for the determination of the primary products of fast pyrolysis of carbohydrates and for their gas-phase manipulation. <i>Analytical Chemistry</i> , 2013 , 85, 10927-	34 ^{.8}	33
61	GWh Level Renewable Energy Storage and Supply using Liquid CO2. <i>Computer Aided Chemical Engineering</i> , 2013 , 32, 415-420	0.6	2
60	Analysis of temperature-dependent current-voltage characteristics for CIGSSe and CZTSSe thin film solar cells from nanocrystal inks 2013 ,		5
59	Device comparison of champion nanocrystal-ink based CZTSSe and CIGSSe solar cells: Capacitance spectroscopy 2013 ,		8
58	Chemical liquid deposition of CuInSe2 and CuIn(S,Se)2 films for solar cells. <i>Thin Solid Films</i> , 2012 , 520, 5431-5437	2.2	8
57	Reverse stress metastability of shunt current in CIGS solar cells 2012,		4
56	Influence of Ge doping on defect distributions of Cu2Zn(Snx Ge1 \overline{M}) (Sy Se1 \overline{M}) fabricated by nanocrystal ink deposition with selenization 2012 ,		1
55	2012,		5
54	Enhancing the performance of CZTSSe solar cells with Ge alloying. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 105, 132-136	6.4	168

53	A synthesis method for multicomponent distillation sequences with fewer columns. <i>AICHE Journal</i> , 2012 , 58, 2479-2494	3.6	30
52	Economic analysis of novel synergistic biofuel (H2Bioil) processes. <i>Biomass Conversion and Biorefinery</i> , 2012 , 2, 141-148	2.3	21
51	Grain growth enhancement of selenide CIGSe nanoparticles to densified films using copper selenides 2012 ,		4
50	A generalized and robust method for efficient thin film photovoltaic devices from multinary sulfide nanocrystal inks 2011 ,		5
49	Earth Abundant Element Cu2Zn(Sn1\(\text{NGex}\) S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication. <i>Chemistry of Materials</i> , 2011 , 23, 2626-2629	9.6	280
48	Formation pathway of CuInSe2 nanocrystals for solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17239-47	16.4	90
47	Energy Systems Analysis for a Renewable Transportation Sector. <i>Computer Aided Chemical Engineering</i> , 2011 , 1889-1893	0.6	
46	CuIn(S,Se)2thin film solar cells from nanocrystal inks: Effect of nanocrystal precursors. <i>Thin Solid Films</i> , 2011 , 520, 523-528	2.2	25
45	Energy Efficiency Limitations of the Conventional Heat Integrated Distillation Column (HIDiC) Configuration for Binary Distillation [Industrial & Engineering Chemistry Research, 2011, 50, 119-130]	3.9	65
44	Are All Thermal Coupling Links between Multicomponent Distillation Columns Useful from an Energy Perspective?. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 1770-1777	3.9	21
43	Solar energy to biofuels. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 343-64	8.9	45
42	Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17384-6	16.4	836
41	Estimation of liquid fuel yields from biomass. Environmental Science & Estimation of liquid fuel yields from biomass. Environmental Science & Estimation of liquid fuel yields from biomass.	305 .3	73
40	Chemical engineering in a solar energy-driven sustainable future. AICHE Journal, 2010, 56, 2762-2768	3.6	15
39	Design of membrane cascades for gas separation. <i>Journal of Membrane Science</i> , 2010 , 364, 263-277	9.6	31
38	Synthesis of distillation configurations: I. Characteristics of a good search space. <i>Computers and Chemical Engineering</i> , 2010 , 34, 73-83	4	67
37	Synthesis of distillation configurations. II: A search formulation for basic configurations. <i>Computers and Chemical Engineering</i> , 2010 , 34, 84-95	4	54
36	Selenization of copper indium gallium disulfide nanocrystal films for thin film solar cells 2009,		4

35	Synergistic routes to liquid fuel for a petroleum-deprived future. AICHE Journal, 2009, 55, 1898-1905	3.6	56
34	A matrix method for multicomponent distillation sequences. AICHE Journal, 2009, 56, 1759-1775	3.6	75
33	Synergy in the hybrid thermochemicalBiological processes for liquid fuel production. <i>Computers and Chemical Engineering</i> , 2009 , 33, 2012-2017	4	12
32	Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. <i>Nano Letters</i> , 2009 , 9, 3060-5	11.5	347
31	Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11672-3	16.4	677
30	Development of CuinSe2 nanocrystal and nanoring inks for low-cost solar cells. <i>Nano Letters</i> , 2008 , 8, 2982-7	11.5	508
29	Sustainable fuel for the transportation sector. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 4828-33	11.5	165
28	Hydrogen economy - an opportunity for chemical engineers?. <i>AICHE Journal</i> , 2005 , 51, 1582-1589	3.6	43
27	Synthesis of multicomponent distillation column configurations. AICHE Journal, 2003, 49, 379-401	3.6	98
26	Separations: Perspective of a process developer/designer. <i>AICHE Journal</i> , 2001 , 47, 967-971	3.6	20
25	Multicomponent thermally coupled systems of distillation columns at minimum reflux. <i>AICHE Journal</i> , 2001 , 47, 2713-2724	3.6	46
24	Multicomponent Distillation Columns with Partitions and Multiple Reboilers and Condensers. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 4258-4266	3.9	44
23	Thermally coupled distillation with reduced number of intercolumn vapor transfers. <i>AICHE Journal</i> , 2000 , 46, 2198-2210	3.6	79
22	Multieffect distillation for thermally coupled configurations. AICHE Journal, 2000, 46, 2211-2224	3.6	36
21	New thermally coupled schemes for ternary distillation. AICHE Journal, 1999, 45, 485-496	3.6	80
20	Thermodynamically Efficient Systems for Ternary Distillation. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 2065-2074	3.9	18
19	Improved direct and indirect systems of columns for ternary distillation. AICHE Journal, 1998, 44, 823-8	3 9 .6	15
18	Efficient use of an intermediate reboiler or condenser in a binary distillation. <i>AICHE Journal</i> , 1998 , 44, 1303-1315	3.6	29

LIST OF PUBLICATIONS

17	Intermediate reboiler and condenser arrangement for binary distillation columns. <i>AICHE Journal</i> , 1998 , 44, 1316-1324	3.6	30
16	More operable arrangements of fully thermally coupled distillation columns. <i>AICHE Journal</i> , 1998 , 44, 2565-2568	3.6	97
15	Are Thermally Coupled Distillation Columns Always Thermodynamically More Efficient for Ternary Distillations?. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 3444-3454	3.9	111
14	Optimal thermodynamic feed conditions for distillation of ideal binary mixtures. <i>AICHE Journal</i> , 1997 , 43, 2984-2996	3.6	39
13	A simplified method for the synthesis of gas separation membrane cascades with limited numbers of compressors. <i>Chemical Engineering Science</i> , 1997 , 52, 1029-1044	4.4	18
12	On the Use of Intermediate Reboilers in the Rectifying Section and Condensers in the Stripping Section of a Distillation Column. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 2801-2807	3.9	35
11	Membrane Cascade Schemes for Multicomponent Gas Separation. <i>Industrial & Description of the Manager of the Man</i>	3.9	13
10	Synthesis of Distillation Column Configurations for a Multicomponent Separation. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 1059-1071	3.9	145
9	Membrane separation process analysis and design strategies based on thermodynamic efficiency of permeation. <i>Chemical Engineering Science</i> , 1996 , 51, 365-385	4.4	22
8	Prefractionation to reduce energy consumption in distillation without changing utility temperatures. <i>AICHE Journal</i> , 1996 , 42, 2118-2127	3.6	2
7	Gas-separation membrane cascades utilizing limited numbers of compressors. <i>AICHE Journal</i> , 1996 , 42, 2141-2154	3.6	19
6	Gas separation membrane cascades I. One-compressor cascades with minimal exergy losses due to mixing. <i>Journal of Membrane Science</i> , 1996 , 112, 115-128	9.6	28
5	Gas separation membrane cascades II. Two-compressor cascades. <i>Journal of Membrane Science</i> , 1996 , 112, 129-146	9.6	27
4	Utilization of Waste Heat Stream in Distillation. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 1287-1293	3.9	15
3	Heat Pumps for Thermally Linked Distillation Columns: An Exercise for Argon Production from Air. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 2717-2730	3.9	16
2	Production of medium pressure nitrogen by cryogenic air separation. <i>Separation and Purification Technology</i> , 1991 , 5, 203-209		5
1	Extrinsic Doping of Ink-Based Cu(In,Ga)(S,Se) 2 -Absorbers for Photovoltaic Applications. <i>Advanced Energy Materials</i> ,2103961	21.8	4