
Anamul H Mir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5624548/publications.pdf Version: 2024-02-01

ANAMIII H MID

#	Article	IF	CITATIONS
1	Study on the dissolution of β-precipitates in the Zr–1Nb alloy under the influence of Ne ion irradiation. Microscopy (Oxford, England), 2021, 70, 461-468.	1.5	1
2	An in-situ TEM study into the role of disorder, temperature and ballistic collisions on the accumulation of helium bubbles and voids in glass-ceramic composites. Journal of Nuclear Materials, 2021, 548, 152836.	2.7	7
3	Nanostructuring Germanium Nanowires by In Situ TEM Ion Irradiation. Particle and Particle Systems Characterization, 2021, 38, 2100154.	2.3	0
4	Using external ion irradiations for simulating self-irradiation damage in nuclear waste glasses: State of the art, recommendations and, prospects. Journal of Nuclear Materials, 2020, 539, 152246.	2.7	25
5	The effect of flux on ion irradiation-enhanced precipitation in AISI-316L: An in-situ TEM study. Journal of Nuclear Materials, 2020, 541, 152414.	2.7	5
6	New Insights about the Importance of the Alteration Layer/Glass Interface. Journal of Physical Chemistry C, 2020, 124, 10032-10044.	3.1	21
7	A General Mechanism for Gel Layer Formation on Borosilicate Glass under Aqueous Corrosion. Journal of Physical Chemistry C, 2020, 124, 5132-5144.	3.1	43
8	Radiation resistance and mechanical properties of magnetron-sputtered Cr2AlC thin films. Journal of Nuclear Materials, 2019, 526, 151742.	2.7	33
9	Effect of density and Z-contrast on the visibility of noble gas precipitates and voids with insights from Monte-Carlo simulations. Micron, 2019, 126, 102712.	2.2	3
10	Direct Comparison of Tungsten Nanoparticles and Foils under Helium Irradiation at High Temperatures Studied via In-Situ Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 1576-1577.	0.4	0
11	Understanding amorphization mechanisms using ion irradiation in situ a TEM and 3D damage reconstruction. Ultramicroscopy, 2019, 207, 112838.	1.9	7
12	Ballistic-damage-induced size changes in equilibrium and under-pressurized Xe precipitates in amorphous silica. Journal of Nuclear Materials, 2019, 519, 229-238.	2.7	3
13	New Microscope and Ion Accelerators for Materials Investigations (MIAMI-2) system at the University of Huddersfield. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 931, 37-43.	1.6	42
14	Enhanced Radiation Tolerance of Tungsten Nanoparticles to He Ion Irradiation. Nanomaterials, 2018, 8, 1052.	4.1	14
15	Xenon solubility and formation of supercritical xenon precipitates in glasses under non-equilibrium conditions. Scientific Reports, 2018, 8, 15320.	3.3	9
16	Electron and electron-ion sequential irradiation of borosilicate glasses: Impact of the pre-existing defects. Journal of Nuclear Materials, 2017, 489, 91-98.	2.7	22
17	Surface and bulk electron irradiation effects in simple and complex glasses. Journal of Non-Crystalline Solids, 2016, 453, 141-149.	3.1	31
18	Understanding and simulating the material behavior during multi-particle irradiations. Scientific Reports, 2016, 6, 30191.	3.3	28

ANAMUL H MIR

#	Article	IF	CITATIONS
19	Self-healing capacity of nuclear glass observed by NMR spectroscopy. Scientific Reports, 2016, 6, 25499.	3.3	38
20	Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties. Journal of Nuclear Materials, 2016, 469, 244-250.	2.7	62
21	Oxide glass structure evolution under swift heavy ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2014, 325, 54-65.	1.4	46