Damien Mertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5624055/publications.pdf

Version: 2024-02-01

304602 276775 1,791 54 22 41 citations h-index g-index papers 57 57 57 2927 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128407.	2.3	11
2	Peptide Hydrogels Assembled from Enzyme-Adsorbed Mesoporous Silica Nanostructures for Thermoresponsive Doxorubicin Release. ACS Applied Nano Materials, 2022, 5, 120-125.	2.4	14
3	Near-infrared responsive nanocomposite hydrogels made from enzyme-coated carbon nanotubes@ large pore mesoporous silica for remotely triggered drug delivery. Materialia, 2022, 22, 101414.	1.3	5
4	A Confinementâ€Driven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media. Small, 2022, 18, e2200414.	5.2	5
5	Magnetic bioactive glass nano-heterostructures: a deeper insight into magnetic hyperthermia properties in the scope of bone cancer treatment. Biomaterials Science, 2022, 10, 3993-4007.	2.6	3
6	Tracking the immune response by MRI using biodegradable and ultrasensitive microprobes. Science Advances, 2022, 8, .	4.7	6
7	Design and applications of protein delivery systems in nanomedicine and tissue engineering. Advances in Colloid and Interface Science, 2021, 287, 102334.	7.0	21
8	Small iron oxide nanoparticles as MRI $\langle i \rangle T \langle i \rangle \langle sub \rangle 1 \langle sub \rangle$ contrast agent: scalable inexpensive water-based synthesis using a flow reactor. Nanoscale, 2021, 13, 8795-8805.	2.8	32
9	Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications. Nanoscale, 2021, 13, 14552-14571.	2.8	23
10	Orienting the Pore Morphology of Core-Shell Magnetic Mesoporous Silica with the Sol-Gel Temperature. Influence on MRI and Magnetic Hyperthermia Properties. Molecules, 2021, 26, 971.	1.7	19
11	Iron Stearate Structures: An Original Tool for Nanoparticles Design. Inorganic Chemistry, 2021, 60, 12445-12456.	1.9	14
12	One pot synthesis of dithiolane dendron functionalized gold nanoparticles. European Journal of Inorganic Chemistry, 2021, 2021, 4286.	1.0	0
13	Structural impact of carbon nanofibers/few-layer-graphene substrate decorated with Ni for CO2 methanation via inductive heating. Applied Catalysis B: Environmental, 2021, 298, 120589.	10.8	9
14	Serum Albumin Antifouling Effects of Hydroxypropyl ellulose and Pluronic F127 Adsorbed on Isobutyramideâ€Grafted Stellate Silica Nanoparticles. European Journal of Inorganic Chemistry, 2021, 2021, 4799-4805.	1.0	5
15	Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications. Advanced Therapeutics, 2020, 3, 1900143.	1.6	28
16	Elaboration of Superparamagnetic and Bioactive Multicore–Shell Nanoparticles (γ-Fe ₂ O ₃ @SiO ₂ -CaO): A Promising Material for Bone Cancer Treatment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47820-47830.	4.0	33
17	Harnessing Composition of Iron Oxide Nanoparticle: Impact of Solvent-Mediated Ligand–Ligand Interaction and Competition between Oxidation and Growth Kinetics. Chemistry of Materials, 2020, 32, 9245-9259.	3.2	15
18	Near infra-red light responsive carbon nanotubes@mesoporous silica for photothermia and drug delivery to cancer cells. Materials Today Chemistry, 2020, 17, 100308.	1.7	23

#	Article	IF	Citations
19	Highly chelating stellate mesoporous silica nanoparticles for specific iron removal from biological media. Journal of Colloid and Interface Science, 2020, 579, 140-151.	5.0	19
20	Phosphate glasses containing monodisperse Fe3â~δO4@SiO2 stellate nanoparticles obtained by melt-quenching process. Ceramics International, 2020, 46, 12120-12127.	2.3	10
21	Fluorescent and magnetic stellate mesoporous silica for bimodal imaging and magnetic hyperthermia. Applied Materials Today, 2019, 16, 301-314.	2.3	36
22	Doxorubicin-Loaded Thermoresponsive Superparamagnetic Nanocarriers for Controlled Drug Delivery and Magnetic Hyperthermia Applications. ACS Applied Materials & Delivery and Magnetic Hyperthermia Applications. ACS Applied Materials & Delivery and Superfaces, 2019, 11, 30610-30620.	4.0	75
23	Design of Anisotropic Iron-Oxide-Based Nanoparticles for Magnetic Hyperthermia. , 2019, , 41-60.		12
24	Dendron based antifouling, MRI and magnetic hyperthermia properties of different shaped iron oxide nanoparticles. Nanotechnology, 2019, 30, 374002.	1.3	16
25	Wrapped stellate silica nanocomposites as biocompatible luminescent nanoplatforms assessed in vivo. Journal of Colloid and Interface Science, 2019, 542, 469-482.	5.0	18
26	Mesoporous silica templated-albumin nanoparticles with high doxorubicin payload for drug delivery assessed with a 3-D tumor cell model. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 332-341.	1.1	19
27	Design of hybrid protein-coated magnetic core-mesoporous silica shell nanocomposites for MRI and drug release assessed in a 3D tumor cell model. Nanotechnology, 2019, 30, 174001.	1.3	22
28	Magnetite- and Iodine-Containing Nanoemulsion as a Dual Modal Contrast Agent for X-ray/Magnetic Resonance Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 403-416.	4.0	19
29	Engineering of Mesoporous Silica Coated Carbonâ€Based Materials Optimized for an Ultrahigh Doxorubicin Payload and a Drug Release Activated by pH, <i>T</i> , and NIRâ€light. Advanced Functional Materials, 2018, 28, 1706996.	7.8	36
30	Design of Proteinâ€Coated Carbon Nanotubes Loaded with Hydrophobic Drugs through Sacrificial Templating of Mesoporous Silica Shells. Chemistry - A European Journal, 2018, 24, 4662-4670.	1.7	11
31	Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization, and Application., 2018, , 43-88.		33
32	Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles. Nanomaterials, 2018, 8, 881.	1.9	64
33	New insights on the formation of gold nanoparticles and Pluronic nanocomposites: Kinetics and thermodynamics parameters. Journal of Molecular Liquids, 2018, 268, 181-189.	2.3	6
34	Evaluating the Critical Roles of Precursor Nature and Water Content When Tailoring Magnetic Nanoparticles for Specific Applications. ACS Applied Nano Materials, 2018, 1, 4306-4316.	2.4	22
35	Guideline to atomically flat TiO2-terminated SrTiO3(001) surfaces. Surface Science, 2018, 677, 39-45.	0.8	16
36	Drug releasing nanoplatforms activated by alternating magnetic fields. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1617-1641.	1.1	84

3

#	Article	IF	CITATIONS
37	Chapter 4. Iron-oxide Nanoparticle-based Contrast Agents. New Developments in NMR, 2017, , 318-447.	0.1	4
38	Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine, 2016, 11, 1889-1910.	1.7	221
39	Optimizing the silanization of thermally-decomposed iron oxide nanoparticles for efficient aqueous phase transfer and MRI applications. RSC Advances, 2016, 6, 93784-93793.	1.7	13
40	Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale, 2016, 8, 3278-3287.	2.8	173
41	Improving Echo-Guided Procedures Using an Ultrasound-CT Image Fusion System. Surgical Innovation, 2015, 22, 217-222.	0.4	14
42	Templated assembly of albumin-based nanoparticles for simultaneous gene silencing and magnetic resonance imaging. Nanoscale, 2014, 6, 11676-11680.	2.8	31
43	Ultrathin, bioresponsive and drug-functionalized protein capsules. Journal of Materials Chemistry, 2012, 22, 21434.	6.7	46
44	Stretch-Induced Biodegradation of Polyelectrolyte Multilayer Films for Drug Release. Langmuir, 2012, 28, 13550-13554.	1.6	37
45	Layer-by-Layer Enzymatic Platform for Stretched-Induced Reactive Release. ACS Macro Letters, 2012, 1, 797-801.	2.3	16
46	Protein Capsules Assembled <i>via </i> li>Isobutyramide Grafts: Sequential Growth, Biofunctionalization, and Cellular Uptake. ACS Nano, 2012, 6, 7584-7594.	7.3	50
47	Tailored design of mechanically sensitive biocatalytic assemblies based on polyelectrolyte multilayers. Journal of Materials Chemistry, 2011, 21, 8324.	6.7	14
48	ATRP-mediated continuous assembly of polymers for the preparation of nanoscale films. Chemical Communications, 2011, 47, 12601.	2.2	46
49	Nanoengineered Films via Surfaceâ€Confined Continuous Assembly of Polymers. Small, 2011, 7, 2863-2867.	5. 2	43
50	Bromo <i>iso</i> butyramide as an Intermolecular Surface Binder for the Preparation of Freeâ€standing Biopolymer Assemblies. Advanced Materials, 2011, 23, 5668-5673.	11.1	42
51	Mechanotransductive surfaces for reversible biocatalysis activation. Nature Materials, 2009, 8, 731-735.	13.3	122
52	Polyelectrolyte multilayer coatings that resist protein adsorption at rest and under stretching. Journal of Materials Chemistry, 2008, 18, 4242.	6.7	30
53	Polyelectrolyte multilayer films under mechanical stretch. Soft Matter, 2007, 3, 1413.	1.2	40
54	Mechanically Responding Nanovalves Based on Polyelectrolyte Multilayers. Nano Letters, 2007, 7, 657-662.	4.5	52