Enrico Mastrobattista

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5623699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	(R)evolution-on-a-chip. Trends in Biotechnology, 2022, 40, 60-76.	9.3	11
2	Impact of Formulation Conditions on Lipid Nanoparticle Characteristics and Functional Delivery of CRISPR RNP for Gene Knock-Out and Correction. Pharmaceutics, 2022, 14, 213.	4.5	13
3	Tuning Surface Charges of Peptide Nanofibers for Induction of Antigen-Specific Immune Tolerance: An Introductory Study. Journal of Pharmaceutical Sciences, 2022, 111, 1004-1011.	3.3	6
4	Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. Journal of Controlled Release, 2022, 343, 207-216.	9.9	30
5	Modulating albumin-mediated transport of peptide-drug conjugates for antigen-specific Treg induction. Journal of Controlled Release, 2022, 348, 938-950.	9.9	3
6	Addressing the Cold Reality of mRNA Vaccine Stability. Journal of Pharmaceutical Sciences, 2021, 110, 997-1001.	3.3	302
7	Programming supramolecular peptide materials by modulating the intermediate steps in the complex assembly pathway: Implications for biomedical applications. Current Opinion in Colloid and Interface Science, 2021, 51, 101396.	7.4	1
8	Preparation of mRNA Polyplexes with Post-conjugated Endosome-Disruptive Peptides. Methods in Molecular Biology, 2021, 2355, 275-286.	0.9	2
9	Formulation and delivery solutions for the next generation biotherapeutics. Journal of Controlled Release, 2021, 336, 583-597.	9.9	1
10	Determination of Chinese hamster ovary (CHO) cell densities and antibody titers from small volumes of cell culture supernatants using multivariate analysis and partial least squares regression of UV-Vis spectra. Analytical and Bioanalytical Chemistry, 2021, 413, 5743-5753.	3.7	7
11	Cas9 RNP transfection by vapor nanobubble photoporation for exÂvivo cell engineering. Molecular Therapy - Nucleic Acids, 2021, 25, 696-707.	5.1	17
12	Shifting Paradigms Revisited: Biotechnology and the Pharmaceutical Sciences. Journal of Pharmaceutical Sciences, 2020, 109, 30-43.	3.3	8
13	Impact of chemistry and nanoformulation parameters on cellular uptake and airway distribution of RNA oligonucleotides. Journal of Controlled Release, 2020, 317, 154-165.	9.9	4
14	Acute lymphoblastic leukaemia patients treated with PEGasparaginase develop antibodies to PEG and the succinate linker. British Journal of Haematology, 2020, 189, 442-451.	2.5	32
15	Control over the fibrillization yield by varying the oligomeric nucleation propensities of self-assembling peptides. Communications Chemistry, 2020, 3, .	4.5	7
16	Feasibility Study for Bedside Production of Recombinant Human Acid α-Glucosidase: Technical and Financial Considerations. Current Pharmaceutical Biotechnology, 2020, 21, 467-479.	1.6	1
17	Nature of Amorphous Hydrophilic Block Affects Self-Assembly of an Artificial Viral Coat Polypeptide. Biomacromolecules, 2019, 20, 3641-3647.	5.4	5
18	Cationic synthetic long peptides-loaded nanogels: An efficient therapeutic vaccine formulation for induction of T-cell responses. Journal of Controlled Release, 2019, 315, 114-125.	9.9	31

#	Article	IF	CITATIONS
19	Inducible Fibril Formation of Silk–Elastin Diblocks. ACS Omega, 2019, 4, 9135-9143.	3.5	10
20	Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Accounts of Chemical Research, 2019, 52, 1555-1564.	15.6	188
21	RGD-decorated cholesterol stabilized polyplexes for targeted siRNA delivery to glioblastoma cells. Drug Delivery and Translational Research, 2019, 9, 679-693.	5.8	7
22	Liposome-targeted recombinant human acid sphingomyelinase: Production, formulation, and in vitro evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 185-195.	4.3	12
23	Colloidal formulation of mistletoe extracts in a pharmaceutical flow process for targeted cancer therapy. Phytomedicine, 2019, 61, 1.	5.3	1
24	mRNA Polyplexes with Post-Conjugated GALA Peptides Efficiently Target, Transfect, and Activate Antigen Presenting Cells. Bioconjugate Chemistry, 2019, 30, 461-475.	3.6	62
25	Modular core-shell polymeric nanoparticles mimicking viral structures for vaccination. Journal of Controlled Release, 2019, 293, 48-62.	9.9	24
26	Critical evaluation of quantification methods for oligonucleotides formulated in lipid nanoparticles. International Journal of Pharmaceutics, 2018, 548, 793-802.	5.2	7
27	Polyethyleneimine coated nanogels for the intracellular delivery of RNase A for cancer therapy. Chemical Engineering Journal, 2018, 340, 32-41.	12.7	34
28	pH-Induced Transformation of Biodegradable Multilamellar Nanovectors for Enhanced Tumor Penetration. ACS Macro Letters, 2018, 7, 1394-1399.	4.8	23
29	Thermosensitive liposomes for triggered release of cytotoxic proteins. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 211-221.	4.3	37
30	Post-PEGylated and crosslinked polymeric ssRNA nanocomplexes as adjuvants targeting lymph nodes with increased cytolytic T cell inducing properties. Journal of Controlled Release, 2018, 284, 73-83.	9.9	15
31	Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Molecular Pharmaceutics, 2017, 14, 1482-1493.	4.6	46
32	Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes. Nanoscale, 2017, 9, 9190-9201.	5.6	31
33	Nanogels for intracellular delivery of biotherapeutics. Journal of Controlled Release, 2017, 259, 16-28.	9.9	116
34	Reduction-Sensitive Polymer-Shell-Coated Nanogels for Intracellular Delivery of Antigens. ACS Biomaterials Science and Engineering, 2017, 3, 42-48.	5.2	10
35	Making individualized drugs a reality. Nature Biotechnology, 2017, 35, 507-513.	17.5	35
36	Drug delivery with living cells. Advanced Drug Delivery Reviews, 2016, 106, 63-72.	13.7	107

#	Article	IF	CITATIONS
37	CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential. Journal of Controlled Release, 2016, 244, 139-148.	9.9	52
38	Gene based therapies for kidney regeneration. European Journal of Pharmacology, 2016, 790, 99-108.	3.5	7
39	Coiled coil interactions for the targeting of liposomes for nucleic acid delivery. Nanoscale, 2016, 8, 8955-8965.	5.6	30
40	Biomedical Applications of Self-Assembling Peptides. Bioconjugate Chemistry, 2016, 27, 3-18.	3.6	136
41	The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail. Journal of the American Chemical Society, 2015, 137, 7775-7784.	13.7	50
42	Liposome functionalization with copper-free "click chemistry― Journal of Controlled Release, 2015, 202, 14-20.	9.9	47
43	Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. Journal of Controlled Release, 2015, 200, 87-96.	9.9	225
44	Wnt3a Protein Reduces Growth Factor-Driven Expansion of Human Hematopoietic Stem and Progenitor Cells in Serum-Free Cultures. PLoS ONE, 2015, 10, e0119086.	2.5	14
45	Decationized polyplexes for gene delivery. Expert Opinion on Drug Delivery, 2015, 12, 507-512.	5.0	16
46	Targeted Decationized Polyplexes for siRNA Delivery. Molecular Pharmaceutics, 2015, 12, 150-161.	4.6	22
47	Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli. Microbial Cell Factories, 2014, 13, 178.	4.0	3
48	Peptide vectors for gene delivery: from single peptides to multifunctional peptide nanocarriers. Nanomedicine, 2014, 9, 2217-2232.	3.3	47
49	Hemocompatibility Assessment of two siRNA Nanocarrier Formulations. Pharmaceutical Research, 2014, 31, 3127-3135.	3.5	4
50	Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. Journal of Controlled Release, 2014, 195, 162-175.	9.9	38
51	Anginex lipoplexes for delivery of anti-angiogenic siRNA. International Journal of Pharmaceutics, 2014, 472, 175-184.	5.2	8
52	Effects of Antigen-Expressing Immunostimulatory Liposomes on Chemotaxis and Maturation of Dendritic Cells In Vitro and in Human Skin Explants. Pharmaceutical Research, 2014, 31, 516-526.	3.5	3
53	Targeted Decationized Polyplexes for Cell Specific Gene Delivery. Bioconjugate Chemistry, 2014, 25, 802-812.	3.6	26
54	Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. Oncotarget, 2014, 5, 6687-6700.	1.8	105

#	Article	IF	CITATIONS
55	Production and biomedical applications of virus-like particles derived from polyomaviruses. Journal of Controlled Release, 2013, 172, 305-321.	9.9	47
56	Strategies for triggered drug release from tumor targeted liposomes. Expert Opinion on Drug Delivery, 2013, 10, 1399-1410.	5.0	69
57	Advanced drug delivery in motion. International Journal of Pharmaceutics, 2013, 454, 517-520.	5.2	7
58	Decationized crosslinked polyplexes for redox-triggered gene delivery. Journal of Controlled Release, 2013, 169, 246-256.	9.9	41
59	Trends in polymeric delivery of nucleic acids to tumors. Journal of Controlled Release, 2013, 170, 209-218.	9.9	29
60	A Solid-Phase Platform for Combinatorial and Scarless Multipart Gene Assembly. ACS Synthetic Biology, 2013, 2, 316-326.	3.8	5
61	Artificial microbes to fight cancer. Nanomedicine, 2013, 8, 5-7.	3.3	1
62	Thermosensitive Peptide-Hybrid ABC Block Copolymers Obtained by ATRP: Synthesis, Self-Assembly, and Enzymatic Degradation. Macromolecules, 2012, 45, 842-851.	4.8	32
63	Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 712-720.	3.3	221
64	A micelle-shedding thermosensitive hydrogel as sustained release formulation. Journal of Controlled Release, 2012, 162, 582-590.	9.9	50
65	Induction of humoral and cellular immune responses by antigen-expressing immunostimulatory liposomes. Journal of Controlled Release, 2012, 164, 323-330.	9.9	5
66	Charged for success. Nature Materials, 2012, 11, 10-12.	27.5	110
67	A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N,N,N-trimethyl chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine. European Journal of Pharmaceutical Sciences, 2012, 45, 467-474.	4.0	14
68	Attaching the phage display-selected GLA peptide to liposomes: Factors influencing target binding. European Journal of Pharmaceutical Sciences, 2012, 45, 330-335.	4.0	27
69	High-content screening of peptide-based non-viral gene delivery systems. Journal of Controlled Release, 2012, 158, 433-442.	9.9	18
70	Targeting tumor antigens to dendritic cells using particulate carriers. Journal of Controlled Release, 2012, 161, 25-37.	9.9	174
71	ATRP, subsequent azide substitution and †click' chemistry: three reactions using one catalyst in one pot. Chemical Communications, 2011, 47, 6972.	4.1	23
72	Looped Structure of Flowerlike Micelles Revealed by ¹ H NMR Relaxometry and Light Scattering. Langmuir, 2011, 27, 9843-9848.	3.5	92

ENRICO MASTROBATTISTA

#	Article	IF	CITATIONS
73	Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. Journal of Controlled Release, 2011, 150, 30-36.	9.9	171
74	How to screen non-viral gene delivery systems in vitro?. Journal of Controlled Release, 2011, 154, 218-232.	9.9	105
75	Preparation and characterization of liposomal formulations of neurotensin-degrading enzyme inhibitors. International Journal of Pharmaceutics, 2011, 416, 448-452.	5.2	6
76	In Vivo Methods to Study Uptake of Nanoparticles into the Brain. Pharmaceutical Research, 2011, 28, 456-471.	3.5	110
77	DNA Nuclear Targeting Sequences for Non-Viral Gene Delivery. Pharmaceutical Research, 2011, 28, 1707-1722.	3.5	49
78	Antigen-expressing immunostimulatory liposomes as a genetically programmable synthetic vaccine. Systems and Synthetic Biology, 2011, 5, 21-31.	1.0	37
79	Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Reviews, 2010, 62, 59-82.	13.7	564
80	Junk DNA enhances pEI-based non-viral gene delivery. International Journal of Pharmaceutics, 2010, 390, 76-83.	5.2	22
81	Identification of Peptide Ligands for Targeting to the Blood-Brain Barrier. Pharmaceutical Research, 2010, 27, 673-682.	3.5	62
82	Flow cytometry for rapid size determination and sorting of nucleic acid containing nanoparticles in biological fluids. Journal of Controlled Release, 2010, 141, 328-338.	9.9	52
83	Peptide nanocarriers for intracellular delivery of photosensitizers. Journal of Controlled Release, 2010, 141, 347-353.	9.9	43
84	Role of trimethylated chitosan (TMC) in nasal residence time, local distribution and toxicity of an intranasal influenza vaccine. Journal of Controlled Release, 2010, 144, 17-24.	9.9	61
85	Conformation and Intermolecular Interactions of SA2 Peptides Self-Assembled into Vesicles. Journal of Physical Chemistry B, 2010, 114, 11046-11052.	2.6	14
86	Optimization and quantification of protein synthesis inside liposomes. Journal of Liposome Research, 2010, 20, 73-83.	3.3	23
87	Relationship between structure and adjuvanticity of N,N,N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. Journal of Controlled Release, 2009, 140, 126-133.	9.9	57
88	Physicochemical and Immunological Characterization of N,N,N-Trimethyl Chitosan-Coated Whole Inactivated Influenza Virus Vaccine for Intranasal Administration. Pharmaceutical Research, 2009, 26, 1353-1364.	3.5	51
89	Stabilization of Peptide Vesicles by Introducing Inter-Peptide Disulfide Bonds. Pharmaceutical Research, 2009, 26, 2186-2193.	3.5	29
90	Nonnatural Amino Acids for Site-Specific Protein Conjugation. Bioconjugate Chemistry, 2009, 20, 1281-1295.	3.6	177

#	Article	IF	CITATIONS
91	Fluorescencein situ hybridization to monitor the intracellular location and accessibility of plasmid DNA delivered by cationic polymer-based gene carriers. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 391-396.	4.3	9
92	Plasmid CpG Depletion Improves Degree and Duration of Tumor Gene Expression After Intravenous Administration of Polyplexes. Pharmaceutical Research, 2008, 25, 1654-1662.	3.5	25
93	Head-to-head comparison of four nonadjuvanted inactivated cell culture-derived influenza vaccines: Effect of composition, spatial organization and immunization route on the immunogenicity in a murine challenge model. Vaccine, 2008, 26, 6555-6563.	3.8	68
94	Angiogenic endothelium shows lactadherin-dependent phagocytosis of aged erythrocytes and apoptotic cells. Blood, 2008, 111, 4542-4550.	1.4	61
95	Self-Assembly of Recombinant Amphiphilic Oligopeptides into Vesicles. Biomacromolecules, 2007, 8, 2753-2761.	5.4	87
96	Cellular Uptake of Cationic Polymer-DNA Complexes Via Caveolae Plays a Pivotal Role in Gene Transfection in COS-7 Cells. Pharmaceutical Research, 2007, 24, 1590-1598.	3.5	223
97	Delivery of Nucleic Acids. Pharmaceutical Research, 2007, 24, 1561-1563.	3.5	21
98	Directed evolution by in vitro compartmentalization. Nature Methods, 2006, 3, 561-570.	19.0	196
99	Artificial viruses: a nanotechnological approach to gene delivery. Nature Reviews Drug Discovery, 2006, 5, 115-121.	46.4	318
100	The Nuclear Pore Complex: The Gateway to Successful Nonviral Gene Delivery. Pharmaceutical Research, 2006, 23, 447-459.	3.5	135
101	Plasmid Engineering for Controlled and Sustained Gene Expression for Nonviral Gene Therapy. Pharmaceutical Research, 2006, 23, 1053-1074.	3.5	38
102	Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate–containing RGD peptide liposomes inhibits experimental arthritis. Arthritis and Rheumatism, 2006, 54, 1198-1208.	6.7	164
103	Strategies for cytosolic delivery of liposomal macromolecules. International Journal of Pharmaceutics, 2005, 298, 305-309.	5.2	33
104	High-Throughput Screening of Enzyme Libraries: In Vitro Evolution of a β-Galactosidase by Fluorescence-Activated Sorting of Double Emulsions. Chemistry and Biology, 2005, 12, 1291-1300.	6.0	198
105	Nonviral gene delivery systems: From simple transfection agents to artificial viruses. Drug Discovery Today: Technologies, 2005, 2, 103-109.	4.0	29
106	In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting. Analytical Biochemistry, 2004, 325, 151-157.	2.4	153
107	OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1665, 48-56.	2.6	101
108	Nanotechnological approaches for the delivery of macromolecules. Journal of Controlled Release, 2003. 87. 81-88.	9.9	101

#	Article	IF	CITATIONS
109	TARGETED LIPOSOMES FOR DELIVERY OF PROTEIN-BASED DRUGS INTO THE CYTOPLASM OF TUMOR CELLS. Journal of Liposome Research, 2002, 12, 57-65.	3.3	25
110	Functional Characterization of an Endosome-disruptive Peptide and Its Application in Cytosolic Delivery of Immunoliposome-entrapped Proteins. Journal of Biological Chemistry, 2002, 277, 27135-27143.	3.4	157
111	Liposomes for Intravenous Drug Targeting: Design and Applications. Mini-Reviews in Medicinal Chemistry, 2002, 2, 319-329.	2.4	41
112	Targeting influenza virosomes to ovarian carcinoma cells. FEBS Letters, 2001, 509, 71-76.	2.8	22
113	Lipid-coated polyplexes for targeted gene delivery to ovarian carcinoma cells. Cancer Gene Therapy, 2001, 8, 405-413.	4.6	39
114	Immunoliposomes for the targeted delivery of antitumor drugs. Advanced Drug Delivery Reviews, 1999, 40, 103-127.	13.7	163