
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5623685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tryptophan metabolites suppress the Wnt pathway and promote adverse limb events in chronic kidney disease. Journal of Clinical Investigation, 2022, 132, .	8.2	23
2	Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	75
3	PRMT4-mediated arginine methylation promotes tyrosine phosphorylation of VEGFR-2 and regulates filopodia protrusions. IScience, 2022, 25, 104736.	4.1	2
4	Transmembrane and Immunoglobulin Domain Containing 1, a Putative Tumor Suppressor, Induces G2/M Cell Cycle Checkpoint Arrest in Colon Cancer Cells. American Journal of Pathology, 2021, 191, 157-167.	3.8	13
5	NEDD4 regulates ubiquitination and stability of the cell adhesion molecule IGPR-1 via lysosomal pathway. Journal of Biomedical Science, 2021, 28, 35.	7.0	10
6	CD209L/L-SIGN and CD209/DC-SIGN Act as Receptors for SARS-CoV-2. ACS Central Science, 2021, 7, 1156-1165.	11.3	165
7	The cell adhesion molecule TMIGD1 binds to moesin and regulates tubulin acetylation and cell migration. Journal of Biomedical Science, 2021, 28, 61.	7.0	9
8	C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. Biology, 2021, 10, 1.	2.8	81
9	Loss of MINAR2 impairs motor function and causes Parkinson's disease-like symptoms in mice. Brain Communications, 2020, 2, fcaa047.	3.3	6
10	COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells, 2020, 9, 1652.	4.1	210
11	Cell adhesion molecule IGPR-1 activates AMPK connecting cell adhesion to autophagy. Journal of Biological Chemistry, 2020, 295, 16691-16699.	3.4	7
12	Haploinsufficiency of Casitas B-Lineage Lymphoma Augments the Progression of Colon Cancer in the Background of Adenomatous Polyposis Coli Inactivation. American Journal of Pathology, 2020, 190, 602-613.	3.8	8
13	N-Glycosylation regulates ligand-dependent activation and signaling of vascular endothelial growth factor receptor 2 (VEGFR2). Journal of Biological Chemistry, 2019, 294, 13117-13130.	3.4	37
14	The cell adhesion molecule IGPR-1 is activated by and regulates responses of endothelial cells to shear stress. Journal of Biological Chemistry, 2019, 294, 13671-13680.	3.4	19
15	Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells, 2019, 8, 544.	4.1	64
16	c-Cbl targets PD-1 in immune cells for proteasomal degradation and modulates colorectal tumor growth. Scientific Reports, 2019, 9, 20257.	3.3	40
17	MINAR1 is a Notch2-binding protein that inhibits angiogenesis and breast cancer growth. Journal of Molecular Cell Biology, 2018, 10, 195-204.	3.3	14
18	c-Cbl Expression Correlates with Human Colorectal Cancer Survival and Its Wnt/β-Catenin Suppressor Function Is Regulated by Tyr371 Phosphorylation. American Journal of Pathology, 2018, 188, 1921-1933.	3.8	25

#	Article	IF	CITATIONS
19	TMIGD1 acts as a tumor suppressor through regulation of p21Cip1/p27Kip1 in renal cancer. Oncotarget, 2018, 9, 9672-9684.	1.8	20
20	Abstract 2047:N-glycosylation modulates endothelial cell receptor tyrosine kinase VEGFR-2 ligand-dependent activation and signaling. , 2018, , .		0
21	Site-Specific <i>N</i> -Glycosylation of Endothelial Cell Receptor Tyrosine Kinase VEGFR-2. Journal of Proteome Research, 2017, 16, 677-688.	3.7	39
22	Defenders and Challengers of Endothelial Barrier Function. Frontiers in Immunology, 2017, 8, 1847.	4.8	75
23	c-Cbl expression as a novel predictive marker of survival in patients with metastatic colorectal cancer Journal of Clinical Oncology, 2017, 35, e15090-e15090.	1.6	0
24	Abstract 1808: Vascular endothelial growth factor receptor-2 (VEGFR-2)N-glycosylation modulates angiogenic signaling. , 2017, , .		0
25	<scp>RNF121</scp> Inhibits Angiogenic Growth Factor Signaling by Restricting Cell Surface Expression of <scp>VEGFR</scp> â€2. Traffic, 2016, 17, 289-300.	2.7	18
26	IGPR-1 Is Required for Endothelial Cell–Cell Adhesion and Barrier Function. Journal of Molecular Biology, 2016, 428, 5019-5033.	4.2	23
27	Two FGF Receptor Kinase Molecules Act in Concert to Recruit and Transphosphorylate Phospholipase CÎ ³ . Molecular Cell, 2016, 61, 98-110.	9.7	48
28	c-Cbl mediates the degradation of tumorigenic nuclear β-catenin contributing to the heterogeneity in Wnt activity in colorectal tumors. Oncotarget, 2016, 7, 71136-71150.	1.8	25
29	Emerging roles of postâ€translational modifications in signal transduction and angiogenesis. Proteomics, 2015, 15, 300-309.	2.2	44
30	TMIGD1 Is a Novel Adhesion Molecule That Protects Epithelial Cells from Oxidative Cell Injury. American Journal of Pathology, 2015, 185, 2757-2767.	3.8	31
31	Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis, 2015, 18, 449-462.	7.2	42
32	The c-Cbl Ubiquitin Ligase Regulates Nuclear β-Catenin and Angiogenesis by Its Tyrosine Phosphorylation Mediated through the Wnt Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 12537-12546.	3.4	37
33	Targeting Receptor Tyrosine Kinases and Their Downstream Signaling with Cellâ€Penetrating Peptides in Human Pulmonary Artery Smooth Muscle and Endothelial Cells. Chemical Biology and Drug Design, 2015, 85, 586-597.	3.2	13
34	ECSCR enhances KDR activation and promotes proteolysis of internalized KDR (LB160). FASEB Journal, 2014, 28, LB160.	0.5	0
35	Lysine Methylation Promotes VEGFR-2 Activation and Angiogenesis. Science Signaling, 2013, 6, ra104.	3.6	39
36	Endothelial Cell-specific Chemotaxis Receptor (ECSCR) Enhances Vascular Endothelial Growth Factor (VEGF) Receptor-2/Kinase Insert Domain Receptor (KDR) Activation and Promotes Proteolysis of Internalized KDR*. Journal of Biological Chemistry, 2013, 288, 10265-10274.	3.4	15

#	Article	IF	CITATIONS
37	Identification of PDCL3 as a Novel Chaperone Protein Involved in the Generation of Functional VEGF Receptor 2. Journal of Biological Chemistry, 2013, 288, 23171-23181.	3.4	31
38	c-Cbl, a Ubiquitin E3 Ligase That Targets Active β-Catenin. Journal of Biological Chemistry, 2013, 288, 23505-23517.	3.4	47
39	Identification of IGPR-1 as a novel adhesion molecule involved in angiogenesis. Molecular Biology of the Cell, 2012, 23, 1646-1656.	2.1	52
40	The Ubiquitin-Proteasome System Meets Angiogenesis. Molecular Cancer Therapeutics, 2012, 11, 538-548.	4.1	67
41	Distinct Activation of Epidermal Growth Factor Receptor by UTP Contributes to Epithelial Cell Wound Repair. American Journal of Pathology, 2011, 178, 1092-1105.	3.8	21
42	c-Cbl inhibits angiogenesis and tumor growth by suppressing activation of PLCÎ ³ 1. Oncogene, 2011, 30, 2198-2206.	5.9	23
43	PEST Motif Serine and Tyrosine Phosphorylation Controls Vascular Endothelial Growth Factor Receptor 2 Stability and Downregulation. Molecular and Cellular Biology, 2011, 31, 2010-2025.	2.3	83
44	Role of c-Cbl–Dependent Regulation of Phospholipase Cl̂³1 Activation in Experimental Choroidal Neovascularization. , 2010, 51, 6803.		17
45	Identification of Ligand-Induced Proteolytic Cleavage and Ectodomain Shedding of VEGFR-1/FLT1 in Leukemic Cancer Cells. Cancer Research, 2009, 69, 2607-2614.	0.9	67
46	A role for protein ubiquitination in VEGFR-2 signalling and angiogenesis. Biochemical Society Transactions, 2009, 37, 1189-1192.	3.4	18
47	IQGAP1-Dependent Signaling Pathway Regulates Endothelial Cell Proliferation and Angiogenesis. PLoS ONE, 2008, 3, e3848.	2.5	85
48	A critical role for the E3-ligase activity of c-Cbl in VEGFR-2-mediated PLCÂ1 activation and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5413-5418.	7.1	61
49	Vascular endothelial growth factor receptors: Molecular mechanisms of activation and therapeutic potentials. Experimental Eye Research, 2006, 83, 1005-1016.	2.6	86
50	VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Frontiers in Bioscience - Landmark, 2006, 11, 11.	3.0	170
51	A Single Amino Acid Substitution in the Activation Loop Defines the Decoy Characteristic of VEGFR-1/FLT-1. Journal of Biological Chemistry, 2006, 281, 867-875.	3.4	78
52	Leucine Motif-dependent Tyrosine Autophosphorylation of Type III Receptor Tyrosine Kinases. Journal of Biological Chemistry, 2006, 281, 8620-8627.	3.4	5
53	The Carboxyl Terminus of VEGFR-2 Is Required for PKC-mediated Down-Regulation. Molecular Biology of the Cell, 2005, 16, 2106-2118.	2.1	72
54	Recruitment and activation of phospholipase Cγ1 by vascularendothelial growth factor receptor-2 are required for tubulogenesis anddifferentiation of endothelial cells. Vol. 278 (2003)16347–16355. Journal of Biological Chemistry, 2005, 280, 25948.	3.4	0

#	Article	IF	CITATIONS
55	The Adaptor Protein Shb Binds to Tyrosine 1175 in Vascular Endothelial Growth Factor (VECF) Receptor-2 and Regulates VEGF-dependent Cellular Migration. Journal of Biological Chemistry, 2004, 279, 22267-22275.	3.4	225
56	Heparan Sulfate Proteoglycans Function as Receptors for Fibroblast Growth Factor-2 Activation of Extracellular Signal–Regulated Kinases 1 and 2. Circulation Research, 2004, 94, 316-323.	4.5	89
57	The Carboxyl Terminus Controls Ligand-dependent Activation of VEGFR-2 and Its Signaling. Journal of Biological Chemistry, 2004, 279, 735-742.	3.4	22
58	Substitution of C-terminus of VEGFR-2 with VEGFR-1 promotes VEGFR-1 activation and endothelial cell proliferation. Oncogene, 2004, 23, 5523-5531.	5.9	28
59	Comparative Structureâ€Function Analysis of VEGFRâ€1 and VEGFRâ€2. Annals of the New York Academy of Sciences, 2003, 995, 200-207.	3.8	40
60	Recruitment and Activation of Phospholipase Cγ1 by Vascular Endothelial Growth Factor Receptor-2 Are Required for Tubulogenesis and Differentiation of Endothelial Cells. Journal of Biological Chemistry, 2003, 278, 16347-16355.	3.4	70
61	The Presence of a Single Tyrosine Residue at the Carboxyl Domain of Vascular Endothelial Growth Factor Receptor-2/FLK-1 Regulates Its Autophosphorylation and Activation of Signaling Molecules. Journal of Biological Chemistry, 2002, 277, 27081-27087.	3.4	46
62	Identification of Tyrosine Residues in Vascular Endothelial Growth Factor Receptor-2/FLK-1 Involved in Activation of Phosphatidylinositol 3-Kinase and Cell Proliferation. Journal of Biological Chemistry, 2001, 276, 17686-17692.	3.4	151
63	Receptor Chimeras Indicate That the Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) Modulates Mitogenic Activity of VEGFR-2 in Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 16986-16992.	3.4	202
64	Vascular Endothelial Growth Factor and Hepatocyte Growth Factor Levels Are Differentially Elevated in Patients with Advanced Retinopathy of Prematurity. American Journal of Pathology, 2000, 156, 1337-1344.	3.8	125
65	A Role for Cadherin-5 in Regulation of Vascular Endothelial Growth Factor Receptor 2 Activity in Endothelial Cells. Molecular Biology of the Cell, 1999, 10, 3401-3407.	2.1	60
66	Autocrine secretion of TGF-β1 and TGF-β2 by pre-adipocytes and adipocytes: A potent negative regulator of adipocyte differentiation and proliferation of mammary carcinoma cells. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 412-420.	1.5	46
67	c-Src Kinase Activity Is Required for Hepatocyte Growth Factor-induced Motility and Anchorage-independent Growth of Mammary Carcinoma Cells. Journal of Biological Chemistry, 1998, 273, 33714-33721.	3.4	144
68	Fibronectin Fibrils and Growth Factors Stimulate Anchorage-Independent Growth of a Murine Mammary Carcinoma. Experimental Cell Research, 1996, 222, 360-369.	2.6	32
69	Hepatocyte Growth Factor (HGF) Is a Copper-Binding Protein: A Facile Probe for Purification of HGF by Immobilized Cu(II)-Affinity Chromatography. Protein Expression and Purification, 1996, 7, 329-333.	1.3	10
70	Phosphatidylinositol 3-Kinase Activity Is Required for Hepatocyte Growth Factor-induced Mitogenic Signals in Epithelial Cells. Journal of Biological Chemistry, 1996, 271, 24850-24855.	3.4	50
71	Role of Hepatocyte Growth Factor in Breast Cancer: A Novel Mitogenic Factor Secreted by Adipocytes. DNA and Cell Biology, 1994, 13, 1189-1197.	1.9	97