
Martijn van de Bunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5623418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep learning reveals 3D atherosclerotic plaque distribution and composition. Scientific Reports, 2020, 10, 21523.	3.3	2
2	Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature, 2020, 582, 240-245.	27.8	282
3	A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression. American Journal of Human Genetics, 2020, 106, 188-201.	6.2	26
4	Reduced somatostatin signalling leads to hypersecretion of glucagon in mice fed a high-fat diet. Molecular Metabolism, 2020, 40, 101021.	6.5	39
5	Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nature Communications, 2020, 11, 4912.	12.8	89
6	AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2019, 99, 67-80.	3.4	52
7	Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nature Genetics, 2019, 51, 1596-1606.	21.4	96
8	Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nature Communications, 2019, 10, 2474.	12.8	223
9	Developing a network view of type 2 diabetes risk pathways through integration of genetic, genomic and functional data. Genome Medicine, 2019, 11, 19.	8.2	33
10	Patterns of differential gene expression in a cellular model of human islet development, and relationship to type 2 diabetes predisposition. Diabetologia, 2018, 61, 1614-1622.	6.3	14
11	Characterising <i>cis</i> -regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut, 2018, 67, 521-533.	12.1	26
12	Electrophysiological properties of human beta-cell lines EndoC-βH1 and -βH2 conform with human beta-cells. Scientific Reports, 2018, 8, 16994.	3.3	39
13	Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. ELife, 2018, 7, .	6.0	103
14	Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nature Genetics, 2018, 50, 956-967.	21.4	389
15	Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development (Cambridge), 2018, 145, .	2.5	78
16	Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study. PLoS ONE, 2018, 13, e0189886.	2.5	9
17	Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice. American Journal of Human Genetics, 2017, 100, 238-256.	6.2	60
18	A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.	0.6	47

Martijn van de Bunt

#	Article	IF	CITATIONS
19	Dynamic landscape and regulation of RNA editing in mammals. Nature, 2017, 550, 249-254.	27.8	495
20	Genetic effects on gene expression across human tissues. Nature, 2017, 550, 204-213.	27.8	3,500
21	Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nature Genetics, 2017, 49, 17-26.	21.4	452
22	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	5.3	31
23	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	27.8	952
24	Systematic Functional Characterization of Candidate Causal Genes for Type 2 Diabetes Risk Variants. Diabetes, 2016, 65, 3805-3811.	0.6	79
25	An alternative effector gene at the type 2 diabetes-associated TCF7L2 locus?. Diabetologia, 2016, 59, 2292-2294.	6.3	7
26	Colocalization of GWAS and eQTL Signals Detects Target Genes. American Journal of Human Genetics, 2016, 99, 1245-1260.	6.2	569
27	Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model. Islets, 2016, 8, 83-95.	1.8	21
28	Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces Î ² Cell Proliferation. Cell Metabolism, 2016, 23, 179-193.	16.2	160
29	Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genetics, 2015, 11, e1005230.	3.5	77
30	Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genetics, 2015, 11, e1005694.	3.5	178
31	Human islet function following 20Âyears of cryogenic biobanking. Diabetologia, 2015, 58, 1503-1512.	6.3	39
32	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	21.4	365
33	Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional Î ² cells. Journal of Clinical Investigation, 2015, 125, 3847-3860.	8.2	148
34	Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci. PLoS Genetics, 2015, 11, e1005535.	3.5	67
35	Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Human Molecular Genetics, 2014, 23, 6432-6440.	2.9	41
36	Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease. PLoS Genetics, 2014, 10, e1004123.	3.5	150

Martijn van de Bunt

#	Article	IF	CITATIONS
37	Insights into �-Cell Biology and Type 2 Diabetes Pathogenesis from Studies of the Islet Transcriptome. Frontiers in Diabetes, 2014, , 111-121.	0.4	Ο
38	Rare variants in <i>PPARG</i> with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13127-13132.	7.1	152
39	Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nature Genetics, 2014, 46, 136-143.	21.4	475
40	Argonaute2 Mediates Compensatory Expansion of the Pancreatic Î ² Cell. Cell Metabolism, 2014, 19, 122-134.	16.2	139
41	Improved Detection of Common Variants Associated with Schizophrenia by Leveraging Pleiotropy with Cardiovascular-Disease Risk Factors. American Journal of Human Genetics, 2013, 92, 197-209.	6.2	422
42	The miRNA Profile of Human Pancreatic Islets and Beta-Cells and Relationship to Type 2 Diabetes Pathogenesis. PLoS ONE, 2013, 8, e55272.	2.5	178
43	SSTR2 is the functionally dominant somatostatin receptor in human pancreatic β- and α-cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1107-E1116.	3.5	119
44	Extent, Causes, and Consequences of Small RNA Expression Variation in Human Adipose Tissue. PLoS Genetics, 2012, 8, e1002704.	3.5	48
45	Insights Into the Pathogenicity of Rare Missense <i>GCK</i> Variants From the Identification and Functional Characterization of Compound Heterozygous and Double Mutations Inherited in <i>Cis</i> . Diabetes Care, 2012, 35, 1482-1484.	8.6	15
46	<i>PTEN</i> Mutations as a Cause of Constitutive Insulin Sensitivity and Obesity. New England Journal of Medicine, 2012, 367, 1002-1011.	27.0	193
47	Human β Cell Transcriptome Analysis Uncovers IncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 435-448.	16.2	410
48	Identification and Functional Characterisation of Novel Glucokinase Mutations Causing Maturity-Onset Diabetes of the Young in Slovakia. PLoS ONE, 2012, 7, e34541.	2.5	22
49	GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: Implications for understanding genetic association signals at this locus. Molecular Genetics and Metabolism, 2011, 104, 648-653.	1.1	142
50	Discovery of a Novel Site Regulating Glucokinase Activity following Characterization of a New Mutation Causing Hyperinsulinemic Hypoglycemia in Humans. Journal of Biological Chemistry, 2011, 286, 19118-19126.	3.4	21
51	From Genetic Association to Molecular Mechanism. Current Diabetes Reports, 2010, 10, 452-466.	4.2	27
52	Identification of a Novel β-Cell Glucokinase (<i>GCK</i>) Promoter Mutation (â^'71G>C) That Modulates <i>GCK</i> Gene Expression Through Loss of Allele-Specific Sp1 Binding Causing Mild Fasting Hyperglycemia in Humans. Diabetes, 2009, 58, 1929-1935.	0.6	34
53	Gene duplications resulting in over expression of glucokinase are not a common cause of hypoglycaemia of infancy in humans. Molecular Genetics and Metabolism, 2008, 94, 268-269.	1.1	3
54	Glucokinase (<i>GCK</i>) and other susceptibility genes for β-cell dysfunction: the candidate approach. Biochemical Society Transactions, 2008, 36, 306-311.	3.4	10

#	Article	IF	CITATIONS
55	Monogenic disorders of the pancreatic β-cell: personalizing treatment for rare forms of diabetes and hypoglycemia. Personalized Medicine, 2007, 4, 247-259.	1.5	3