
Marc Ouellette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5623103/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Species-Specific and Ubiquitous-DNA-Based Assays for Rapid Identification of <i>Staphylococcus aureus</i> . Journal of Clinical Microbiology, 1998, 36, 618-623.	1.8	392
2	Correlation between the Resistance Genotype Determined by Multiplex PCR Assays and the Antibiotic Susceptibility Patterns of Staphylococcus aureus andStaphylococcus epidermidis. Antimicrobial Agents and Chemotherapy, 2000, 44, 231-238.	1.4	359
3	Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resistance Updates, 2004, 7, 257-266.	6.5	336
4	Development of a PCR Assay for Rapid Detection of Enterococci. Journal of Clinical Microbiology, 1999, 37, 3497-3503.	1.8	310
5	New Mechanisms of Drug Resistance in Parasitic Protozoa. Annual Review of Microbiology, 1995, 49, 427-460.	2.9	286
6	Development of a PCR Assay for Identification of Staphylococci at Genus and Species Levels. Journal of Clinical Microbiology, 2001, 39, 2541-2547.	1.8	278
7	Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO Journal, 1997, 16, 2590-2598.	3.5	272
8	Rapid Detection of Group B Streptococci in Pregnant Women at Delivery. New England Journal of Medicine, 2000, 343, 175-179.	13.9	260
9	The initial state of the human gut microbiome determines its reshaping by antibiotics. ISME Journal, 2016, 10, 707-720.	4.4	251
10	Drug Uptake and Modulation of Drug Resistance in Leishmania by an Aquaglyceroporin. Journal of Biological Chemistry, 2004, 279, 31010-31017.	1.6	232
11	Unresponsiveness to Glucantime Treatment in Iranian Cutaneous Leishmaniasis due to Drug-Resistant Leishmania tropica Parasites. PLoS Medicine, 2006, 3, e162.	3.9	231
12	The Leishmania ATP-binding Cassette Protein PGPA Is an Intracellular Metal-Thiol Transporter ATPase. Journal of Biological Chemistry, 2001, 276, 26301-26307.	1.6	205
13	Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei. Nature, 1990, 348, 174-175.	13.7	190
14	Functional Cloning of the Miltefosine Transporter. Journal of Biological Chemistry, 2003, 278, 49965-49971.	1.6	189
15	Development of Conventional and Real-Time PCR Assays for the Rapid Detection of Group B Streptococci. Clinical Chemistry, 2000, 46, 324-331.	1.5	181
16	Co-amplification of the gamma -glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO Journal, 1997, 16, 3057-3065.	3.5	175
17	Resistance to Antimony and Treatment Failure in HumanLeishmania (Viannia)Infection. Journal of Infectious Diseases, 2006, 193, 1375-1383.	1.9	161
18	Role of ABC transporter MRPA, Â-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. Journal of Antimicrobial Chemotherapy, 2006, 59, 204-211.	1.3	153

#	Article	IF	CITATIONS
19	Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Research, 2009, 37, 1387-1399.	6.5	153
20	Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Molecular and Biochemical Parasitology, 2000, 110, 195-206.	0.5	150
21	A Proteomics Screen Implicates HSP83 and a Small Kinetoplastid Calpain-related Protein in Drug Resistance in Leishmania donovani Clinical Field Isolates by Modulating Drug-induced Programmed Cell Death. Molecular and Cellular Proteomics, 2007, 6, 88-101.	2.5	149
22	A combined proteomic and transcriptomic approach to the study of stage differentiation inLeishmania infantum. Proteomics, 2006, 6, 3567-3581.	1.3	148
23	An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2192-2197.	3.3	144
24	Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biology, 2008, 9, R115.	13.9	140
25	Modulation in aquaglyceroporinAQP1gene transcript levels in drug-resistantLeishmania. Molecular Microbiology, 2005, 57, 1690-1699.	1.2	137
26	Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Research, 2012, 40, 1131-1147.	6.5	135
27	Leishmania major LmACR2 Is a Pentavalent Antimony Reductase That Confers Sensitivity to the Drug Pentostam. Journal of Biological Chemistry, 2004, 279, 37445-37451.	1.6	134
28	Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. Journal of Antimicrobial Chemotherapy, 2000, 46, 527-534.	1.3	132
29	Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania. PLoS Biology, 2014, 12, e1001868.	2.6	130
30	Antimony Uptake Systems in the Protozoan Parasite Leishmania and Accumulation Differences in Antimony-Resistant Parasites. Antimicrobial Agents and Chemotherapy, 2003, 47, 3073-3079.	1.4	127
31	Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Molecular and Biochemical Parasitology, 2000, 108, 131-135.	0.5	126
32	Role of the ABC Transporter MRPA (PGPA) in Antimony Resistance in Leishmania infantum Axenic and Intracellular Amastigotes. Antimicrobial Agents and Chemotherapy, 2005, 49, 1988-1993.	1.4	125
33	Live Nonpathogenic Parasitic Vector as a Candidate Vaccine against Visceral Leishmaniasis. Infection and Immunity, 2005, 73, 6372-6382.	1.0	124
34	Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Molecular Microbiology, 1999, 34, 726-735.	1.2	123
35	Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. BioMetals, 2003, 16, 441-446.	1.8	122
36	Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics, 2008, 9, 255.	1.2	122

#	Article	IF	CITATIONS
37	Proteome Mapping of the Protozoan Parasite Leishmania and Application to the Study of Drug Targets and Resistance Mechanisms. Molecular and Cellular Proteomics, 2003, 2, 146-155.	2.5	121
38	Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research, 2016, 5, 2350.	0.8	111
39	A proteomic approach to identify developmentally regulated proteins in Leishmania infantum. Proteomics, 2002, 2, 1007.	1.3	107
40	Parasite Susceptibility to Amphotericin B in Failures of Treatment for Visceral Leishmaniasis in Patients Coinfected with HIV Type 1 and <i>Leishmania infantum</i> . Clinical Infectious Diseases, 2009, 48, e16-e22.	2.9	107
41	Modulation of gene expression in Leishmania drug resistant mutants as determined by targeted DNA microarrays. Nucleic Acids Research, 2003, 31, 5886-5896.	6.5	105
42	Biochemical characterization of <i>Leishmania major</i> aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Molecular Microbiology, 2007, 65, 1006-1017.	1.2	105
43	High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Molecular and Biochemical Parasitology, 1994, 67, 49-57.	0.5	103
44	Efflux Systems and Increased Trypanothione Levels in Arsenite-ResistantLeishmania. Experimental Parasitology, 1997, 87, 275-282.	0.5	103
45	Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization. Clinical Chemistry, 2005, 51, 1836-1844.	1.5	103
46	DNA Transformation of Leishmania infantum Axenic Amastigotes and Their Use in Drug Screening. Antimicrobial Agents and Chemotherapy, 2001, 45, 1168-1173.	1.4	102
47	Use of tuf Sequences for Genus-Specific PCR Detection and Phylogenetic Analysis of 28 Streptococcal Species. Journal of Clinical Microbiology, 2004, 42, 3686-3695.	1.8	102
48	Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistantLeishmania. Nucleic Acids Research, 1993, 21, 1895-1901.	6.5	100
49	Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase β-subunit. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2013-2025.	0.8	97
50	Modulation of Leishmania ABC Protein Gene Expression through Life Stages and among Drug-Resistant Parasites. Eukaryotic Cell, 2006, 5, 1713-1725.	3.4	97
51	Reduced Infectivity of a Leishmania donovani Biopterin Transporter Genetic Mutant and Its Use as an Attenuated Strain for Vaccination. Infection and Immunity, 2002, 70, 62-68.	1.0	96
52	Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Molecular and Biochemical Parasitology, 2009, 165, 32-47.	0.5	95
53	Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. EMBO Journal, 1999, 18, 2342-2351.	3.5	92
54	Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania. Cell Death and Disease, 2011, 2, e201-e201.	2.7	91

#	Article	IF	CITATIONS
55	Pterin transport and metabolism in Leishmania and related trypanosomatid parasites. International Journal for Parasitology, 2002, 32, 385-398.	1.3	89
56	Genome sequencing of linezolid-resistant <i>Streptococcus pneumoniae</i> mutants reveals novel mechanisms of resistance. Genome Research, 2009, 19, 1214-1223.	2.4	87
57	Multiple Mutations in Heterogeneous Miltefosine-Resistant Leishmania major Population as Determined by Whole Genome Sequencing. PLoS Neglected Tropical Diseases, 2012, 6, e1512.	1.3	84
58	Autonomous replication of bacterial DNA plasmid oligomers in Leishmania. Molecular and Biochemical Parasitology, 1994, 65, 39-49.	0.5	83
59	Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Molecular and Biochemical Parasitology, 2006, 147, 64-73.	0.5	82
60	DNA Repair Pathways in Trypanosomatids: from DNA Repair to Drug Resistance. Microbiology and Molecular Biology Reviews, 2014, 78, 40-73.	2.9	79
61	A novel antifolate resistance gene on the amplified H circle of Leishmania. EMBO Journal, 1992, 11, 3601-8.	3.5	79
62	Preventing Antibiotic Resistance through Rapid Genotypic Identification of Bacteria and of Their Antibiotic Resistance Genes in the Clinical Microbiology Laboratory. Journal of Clinical Microbiology, 1998, 36, 2169-2172.	1.8	77
63	Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite <i>Leishmania</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3012-21.	3.3	76
64	Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Molecular and Biochemical Parasitology, 2012, 183, 166-176.	0.5	73
65	Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 126-132.	1.4	71
66	Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. Journal of Medical Microbiology, 2016, 65, 169-175.	0.7	71
67	Homology of ORFs from Tn2603and from R46 to site-specific recombinases. Nucleic Acids Research, 1987, 15, 10055-10055.	6.5	70
68	The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress and Chaperones, 2004, 9, 294.	1.2	70
69	The P-glycoprotein-related gene family in Leishmania. Molecular and Biochemical Parasitology, 1994, 68, 81-91.	0.5	69
70	Glucantime-resistant Leishmania tropica isolated from Iranian patients with cutaneous leishmaniasis are sensitive to alternative antileishmania drugs. Parasitology Research, 2007, 101, 1319-1322.	0.6	69
71	Gene Expression Profiling and Molecular Characterization of Antimony Resistance in Leishmania amazonensis. PLoS Neglected Tropical Diseases, 2011, 5, e1167.	1.3	69
72	Frequent amplification of a short chain dehydrogenase gene as part of circular and linear amplicons in methortexate resistant Lesihmania. Nucleic Acids Research, 1993, 21, 4305-4312.	6.5	68

#	Article	IF	CITATIONS
73	Drug resistance analysis by next generation sequencing in Leishmania. International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5, 26-35.	1.4	66
74	The γâ€glutamylcysteine synthetase gene of Leishmania is essential and involved in response to oxidants. Molecular Microbiology, 2009, 74, 914-927.	1.2	65
75	ABC transporters in Leishmania and their role in drug resistance. Drug Resistance Updates, 1998, 1, 43-48.	6.5	64
76	Biochemical and molecular mechanisms of drug resistance in parasites. Tropical Medicine and International Health, 2001, 6, 874-882.	1.0	64
77	Intracellular Survival of <i>Leishmania</i> Species That Cause Visceral Leishmaniasis Is Significantly Reduced by HIVâ€I Protease Inhibitors. Journal of Infectious Diseases, 2008, 198, 1292-1299.	1.9	64
78	Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics, 2011, 12, 512.	1.2	64
79	Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLoS ONE, 2013, 8, e81899.	1.1	63
80	Telomeric gene deletion and intrachromosomal amplification in antimonyâ€resistant <i><scp>L</scp>eishmania</i> . Molecular Microbiology, 2013, 88, 189-202.	1.2	62
81	Intrachromosomal Amplification, Locus Deletion and Point Mutation in the Aquaglyceroporin AQP1 Gene in Antimony Resistant Leishmania (Viannia) guyanensis. PLoS Neglected Tropical Diseases, 2015, 9, e0003476.	1.3	62
82	Differential Protein Expression Analysis of Leishmania major Reveals Novel Roles for Methionine Adenosyltransferase and S-Adenosylmethionine in Methotrexate Resistance. Journal of Biological Chemistry, 2004, 279, 33273-33280.	1.6	59
83	Untargeted metabolomic analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid metabolism. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 20-27.	1.4	58
84	P-Glycoprotein overexpression in methotrexate-resistant Leishmania tropica. Biochemical Pharmacology, 1994, 47, 1939-1947.	2.0	57
85	Gene Disruption of the P-Glycoprotein Related GenepgpaofLeishmania tarentolae. Biochemical and Biophysical Research Communications, 1996, 224, 772-778.	1.0	57
86	Comparative Proteomics Analyses Reveal a Potential Biomarker for the Detection of Vancomycin-Intermediate Staphylococcus aureus Strains. Journal of Proteome Research, 2007, 6, 4690-4702.	1.8	56
87	Growth Phase Regulation of the Main Folate Transporter of Leishmania infantum and Its Role in Methotrexate Resistance. Journal of Biological Chemistry, 2004, 279, 54494-54501.	1.6	54
88	Gene Amplification in <i>Leishmania tarentolae</i> Selected for Resistance to Sodium Stibogluconate. Antimicrobial Agents and Chemotherapy, 1998, 42, 1689-1694.	1.4	53
89	Role of the ABC Transporter PRP1 (ABCC7) in Pentamidine Resistance in Leishmania Amastigotes. Antimicrobial Agents and Chemotherapy, 2007, 51, 3030-3032.	1.4	53
90	A New Type of High Affinity Folic Acid Transporter in the Protozoan Parasite Leishmania and Deletion of Its Gene in Methotrexate-resistant Cells. Journal of Biological Chemistry, 2002, 277, 29460-29467.	1.6	52

#	Article	IF	CITATIONS
91	Coordinated gene expression by post-transcriptional regulons in African trypanosomes. Journal of Biology, 2009, 8, 100.	2.7	52
92	Pterin and Folate Reduction by theLeishmania tarentolaeH Locus Short-Chain Dehydrogenase/Reductase PTR1. Archives of Biochemistry and Biophysics, 1997, 342, 197-202.	1.4	51
93	Genome Annotation and Intraviral Interactome for the <i>Streptococcus pneumoniae</i> Virulent Phage Dp-1. Journal of Bacteriology, 2011, 193, 551-562.	1.0	50
94	Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci. Journal of Bacteriology, 2000, 182, 6913-6920.	1.0	48
95	Prefractionation by Digitonin Extraction Increases Representation of the Cytosolic and Intracellular Proteome ofLeishmaniainfantum. Journal of Proteome Research, 2006, 5, 1741-1750.	1.8	48
96	Different Mutations in a P-type ATPase Transporter in Leishmania Parasites are Associated with Cross-resistance to Two Leading Drugs by Distinct Mechanisms. PLoS Neglected Tropical Diseases, 2016, 10, e0005171.	1.3	48
97	Inhibition of MRSA and of <i>Clostridium difficile</i> by durancin 61A: synergy with bacteriocins and antibiotics. Future Microbiology, 2017, 12, 205-212.	1.0	48
98	Resistance of Leishmania donovani to Sodium Stibogluconate Is Related to the Expression of Host and Parasite γ-Glutamylcysteine Synthetase. Antimicrobial Agents and Chemotherapy, 2006, 50, 88-95.	1.4	47
99	Down regulation of KMP-11 in Leishmania infantum axenic antimony resistant amastigotes as revealed by a proteomic screen. Experimental Parasitology, 2009, 123, 51-57.	0.5	47
100	Induced tigecycline resistance in <i>Streptococcus pneumoniae</i> mutants reveals mutations in ribosomal proteins and rRNA. Journal of Antimicrobial Chemotherapy, 2015, 70, 2973-2980.	1.3	47
101	A recombinant non-pathogenic Leishmania vaccine expressing human immunodeficiency virus 1 (HIV-1) Gag elicits cell-mediated immunity in mice and decreases HIV-1 replication in human tonsillar tissue following exposure to HIV-1 infection. Journal of General Virology, 2007, 88, 217-225.	1.3	45
102	Intracellular Localization of the ABCC Proteins of <i>Leishmania</i> and Their Role in Resistance to Antimonials. Antimicrobial Agents and Chemotherapy, 2009, 53, 2646-2649.	1.4	45
103	ABC proteins of Leishmania. Journal of Bioenergetics and Biomembranes, 2001, 33, 469-474.	1.0	44
104	Exoproteome dynamics in Leishmania infantum. Journal of Proteomics, 2013, 84, 106-118.	1.2	44
105	A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Molecular Microbiology, 2005, 58, 1430-1440.	1.2	43
106	Analysis of Stage-Specific Expression of Basic Proteins in <i>Leishmania infantum</i> . Journal of Proteome Research, 2010, 9, 3842-3853.	1.8	43
107	Microbial multidrug-resistance ABC transporters. Trends in Microbiology, 1994, 2, 407-411.	3.5	42
108	Changes in folate and pterin metabolism after disruption of the Leishmania H locus short chain dehydrogenase gene. Journal of Biological Chemistry, 1994, 269, 7310-5.	1.6	42

#	Article	IF	CITATIONS
109	Development of a Rapid PCR Assay Specific forStaphylococcus saprophyticus and Application to Direct Detection from Urine Samples. Journal of Clinical Microbiology, 2000, 38, 3280-3284.	1.8	41
110	Gene Amplification in Amphotericin B-Resistant Leishmania tarentolae. Experimental Parasitology, 2001, 99, 141-147.	0.5	41
111	Correlation between microarray DNA hybridization efficiency and the position of short capture probe on the target nucleic acid. BioTechniques, 2005, 39, 89-96.	0.8	41
112	Recombinant Leishmania major Secreting Biologically Active Granulocyte-Macrophage Colony-Stimulating Factor Survives Poorly in Macrophages In Vitro and Delays Disease Development in Mice. Infection and Immunity, 2003, 71, 6499-6509.	1.0	39
113	High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 165-173.	1.4	37
114	Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutationsÂin Leishmania. Nature Communications, 2019, 10, 5627.	5.8	37
115	The role of reduced pterins in resistance to reactive oxygen and nitrogen intermediates in the protozoan parasite Leishmania. Free Radical Biology and Medicine, 2009, 46, 367-375.	1.3	36
116	Modulation of Gene Expression in Human Macrophages Treated with the Anti- <i>Leishmania</i> Pentavalent Antimonial Drug Sodium Stibogluconate. Antimicrobial Agents and Chemotherapy, 2008, 52, 526-533.	1.4	35
117	Protection againstLeishmania majorChallenge Infection in Mice Vaccinated with Live Recombinant Parasites Expressing a Cytotoxic Gene. Journal of Infectious Diseases, 1998, 177, 188-195.	1.9	34
118	Nelfinavir, an HIV-1 Protease Inhibitor, Induces Oxidative Stress–Mediated, Caspase-Independent Apoptosis in Leishmania Amastigotes. PLoS Neglected Tropical Diseases, 2010, 4, e642.	1.3	34
119	Selective Killing ofLeishmaniaAmastigotes Expressing a Thymidine Kinase Suicide Gene. Experimental Parasitology, 1997, 85, 35-42.	0.5	33
120	[13] Amplification of ABC transporter gene pgpA and of other heavy metal resistance genes in Leishmania tarentolae and their study by gene transfection and gene disruption. Methods in Enzymology, 1998, 292, 182-193.	0.4	33
121	Role of the locus and of the resistance gene on gene amplification frequency in methotrexate resistant Leishmania tarentolae. Nucleic Acids Research, 1999, 27, 3653-3659.	6.5	33
122	Interactions between BRCA2 and RAD51 for promoting homologous recombination in Leishmania infantum. Nucleic Acids Research, 2012, 40, 6570-6584.	6.5	32
123	Whole genome sequencing of penicillin-resistant Streptococcus pneumoniae reveals mutations in penicillin-binding proteins and in a putative iron permease. Genome Biology, 2011, 12, R115.	13.9	30
124	Mitochondrial Proteomics of Antimony and Miltefosine Resistant Leishmania infantum. Proteomes, 2015, 3, 328-346.	1.7	30
125	Use of Oral Miltefosine for Cutaneous Leishmaniasis in Canadian Soldiers Returning from Afghanistan. Canadian Journal of Infectious Diseases and Medical Microbiology, 2008, 19, 394-396.	0.7	29
126	ABC transporters involved in drug resistance in human parasites. Essays in Biochemistry, 2011, 50, 121-144.	2.1	29

#	Article	IF	CITATIONS
127	On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon. Frontiers in Microbiology, 2015, 6, 1020.	1.5	29
128	The impact of distinct culture media in <i>Leishmania infantum</i> biology and infectivity. Parasitology, 2014, 141, 192-205.	0.7	28
129	Chromosomal Translocations in the Parasite Leishmania by a MRE11/RAD50-Independent Microhomology-Mediated End Joining Mechanism. PLoS Genetics, 2016, 12, e1006117.	1.5	28
130	High Affinity S-Adenosylmethionine Plasma Membrane Transporter of Leishmania Is a Member of the Folate Biopterin Transporter (FBT) Family. Journal of Biological Chemistry, 2010, 285, 19767-19775.	1.6	27
131	Characterization of a plasmid isolated from Branhamella catarrhalis and detection of plasmid sequences within the genome of a B. catarrhalis strain. Plasmid, 1988, 20, 158-162.	0.4	26
132	Characterization of the folylpolyglutamate synthetase gene and polyglutamylation of folates in the protozoan parasite Leishmania. Molecular and Biochemical Parasitology, 2002, 124, 63-71.	0.5	26
133	Oligonucleotide probes for the detection of TEM-1 and TEM-2 β-lactamase genes and their transposons. Canadian Journal of Microbiology, 1987, 33, 205-211.	0.8	24
134	Gene Amplification and Point Mutations in Pyrimidine Metabolic Genes in 5-Fluorouracil Resistant Leishmania infantum. PLoS Neglected Tropical Diseases, 2013, 7, e2564.	1.3	24
135	Genomic Analyses of DNA Transformation and Penicillin Resistance in Streptococcus pneumoniae Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2014, 58, 1397-1403.	1.4	24
136	Differences in Antibiotic-Induced Oxidative Stress Responses between Laboratory and Clinical Isolates of Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2015, 59, 5420-5426.	1.4	24
137	Penicillin induces alterations in glutamine metabolism in Streptococcus pneumoniae. Scientific Reports, 2017, 7, 14587.	1.6	24
138	Functional analysis and complex gene rearrangements of the folate/biopterin transporter (FBT) gene family in the protozoan parasite Leishmania. Molecular and Biochemical Parasitology, 2008, 162, 155-164.	0.5	23
139	Intrachromosomal tandem duplication and repeat expansion during attempts to inactivate the subtelomeric essential gene GSH1 in Leishmania. Nucleic Acids Research, 2011, 39, 7499-7511.	6.5	23
140	Genomic Characterization of Ciprofloxacin Resistance in a Laboratory-Derived Mutant and a Clinical Isolate of Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2013, 57, 4911-4919.	1.4	23
141	Formation of Linear Amplicons with Inverted Duplications in Leishmania Requires the MRE11 Nuclease. PLoS Genetics, 2014, 10, e1004805.	1.5	23
142	Roles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum. Nucleic Acids Research, 2015, 43, 2701-2715.	6.5	23
143	Culture-enriched human gut microbiomes reveal core and accessory resistance genes. Microbiome, 2019, 7, 56.	4.9	23
144	Multidrug resistance and ABC transporters in parasitic protozoa. Journal of Molecular Microbiology and Biotechnology, 2001, 3, 201-6.	1.0	23

#	Article	IF	CITATIONS
145	Inactivation of the Leishmania tarentolae Pterin Transporter (BT1) and Reductase (PTR1) Genes Leads to Viable Parasites with Changes in Folate Metabolism and Hypersensitivity to the Antifolate Methotrexate. Journal of Biological Chemistry, 2004, 279, 18575-18582.	1.6	22
146	In primary human monocyte-derived macrophages exposed to Human immunodeficiency virus type 1, does the increased intracellular growth of Leishmania infantum rely on its enhanced uptake?. Journal of General Virology, 2006, 87, 1295-1302.	1.3	22
147	Divergence among Genes Encoding the Elongation Factor Tu of <i>Yersinia</i> Species. Journal of Bacteriology, 2008, 190, 7548-7558.	1.0	22
148	Analysis of Membrane-Enriched and High Molecular Weight Proteins inLeishmania infantumPromastigotes and Axenic Amastigotes. Journal of Proteome Research, 2012, 11, 3974-3985.	1.8	22
149	Multiple mutations and increased RNA expression in tetracycline-resistant <i>Streptococcus pneumoniae</i> as determined by genome-wide DNA and mRNA sequencing. Journal of Antimicrobial Chemotherapy, 2015, 70, 1946-1959.	1.3	22
150	Binding of Mycoplasma arthritidis-derived mitogen to human MHC class II molecules via its N terminus is modulated by invariant chain expression and its C terminus is required for T cell activation. European Journal of Immunology, 2000, 30, 1748-1756.	1.6	21
151	Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite <i>Leishmania donovani</i> . Clinical Infectious Diseases, 2021, 72, e526-e532.	2.9	21
152	Microbial multidrug resistance. International Journal of Antimicrobial Agents, 1997, 8, 179-187.	1.1	20
153	Drug resistance in Leishmania: similarities and differences to other organisms. Drug Resistance Updates, 1998, 1, 266-278.	6.5	20
154	Real-Time PCR Assay for Detection of Fluoroquinolone Resistance Associated with grlA Mutations in Staphylococcus aureus. Journal of Clinical Microbiology, 2003, 41, 3246-3251.	1.8	20
155	Stage specific gene expression and cellular localization of two isoforms of the serine hydroxymethyltransferase in the protozoan parasite Leishmania. Molecular and Biochemical Parasitology, 2006, 150, 63-71.	0.5	20
156	HIVâ€l Replication Is Stimulated by Sodium Stibogluconate, the Therapeutic Mainstay in the Treatment of Leishmaniasis. Journal of Infectious Diseases, 2007, 195, 236-245.	1.9	20
157	A protein of the leucine-rich repeats (LRRs) superfamily is implicated in antimony resistance in Leishmania infantum amastigotes. Molecular and Biochemical Parasitology, 2008, 158, 95-99.	0.5	20
158	Genomic analysis and reconstruction of cefotaxime resistance in Streptococcus pneumoniae. Journal of Antimicrobial Chemotherapy, 2013, 68, 1718-1727.	1.3	20
159	Adaptation of Leishmania Cells to in Vitro Culture Results in a More Efficient Reduction and Transport of Biopterin. Experimental Parasitology, 2001, 97, 161-168.	0.5	19
160	MRPA-independent mechanisms of antimony resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 28-37.	1.4	19
161	Residues involved in co-factor and substrate binding of the short-chain dehydrogenase/reductase PTR1 producing methotrexate resistance in Leishmania. FEBS Journal, 1998, 251, 768-774.	0.2	18
162	Generation of an aquaglyceroporin AQP1 null mutant in Leishmania major. Molecular and Biochemical Parasitology, 2015, 201, 108-111.	0.5	18

#	Article	IF	CITATIONS
163	Involvement of zinc in the binding ofMycoplasma arthritidis-derived mitogen to the proximity of the HLA-DR binding groove regardless of histidine 81 of the β chain. European Journal of Immunology, 2002, 32, 50-58.	1.6	17
164	Proteomic and Transcriptomic Analysis of Linezolid Resistance in <i>Streptococcus pneumoniae</i> . Journal of Proteome Research, 2011, 10, 4439-4452.	1.8	17
165	Preventing Antibiotic Resistance Using Rapid DNA-Based Diagnostic Tests. Infection Control and Hospital Epidemiology, 1998, 19, 560-564.	1.0	16
166	Genetic Polymorphisms and Drug Susceptibility in Four Isolates of Leishmania tropica Obtained from Canadian Soldiers Returning from Afghanistan. PLoS Neglected Tropical Diseases, 2012, 6, e1463.	1.3	16
167	A genomic approach to understand interactions between Streptococcus pneumoniae and its bacteriophages. BMC Genomics, 2015, 16, 972.	1.2	16
168	Deep-sequencing revealing mutation dynamics in the miltefosine transporter gene in Leishmania infantum selected for miltefosine resistance. Parasitology Research, 2016, 115, 3699-3703.	0.6	16
169	Effect of polyglutamylation of methotrexate on its accumulation and the development of resistance in the protozoan parasite Leishmania. Biochemical Pharmacology, 2003, 66, 999-1008.	2.0	15
170	Gene expression modulation and the molecular mechanisms involved in <scp>N</scp> elfinavir resistance in <i><scp>L</scp>eishmania donovani</i> axenic amastigotes. Molecular Microbiology, 2013, 89, 565-582.	1.2	15
171	Structure of pteridine reductase (PTR1) fromLeishmania tarentolae. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1539-1544.	2.5	14
172	Structure–function analysis of the highly conserved charged residues of the membrane protein FT1, the main folic acid transporter of the protozoan parasite Leishmania. Biochemical Pharmacology, 2010, 79, 30-38.	2.0	13
173	Genomewide Analysis of Mode of Action of the <i>S</i> -Adenosylmethionine Analogue Sinefungin in Leishmania infantum. MSystems, 2019, 4, .	1.7	13
174	Coordinating funding in public health emergencies. Lancet, The, 2016, 387, 2197-2198.	6.3	12
175	Antifolate Resistance Mechanisms from Bacteria to Cancer Cells with Emphasis on Parasites. Advances in Experimental Medicine and Biology, 1998, 456, 99-113.	0.8	12
176	Generation of Leishmania Hybrids by Whole Genomic DNA Transformation. PLoS Neglected Tropical Diseases, 2012, 6, e1817.	1.3	11
177	Proteomic analysis of metacyclogenesis in Leishmania infantum wild-type and PTR1 null mutant. EuPA Open Proteomics, 2014, 4, 171-183.	2.5	10
178	Complete Genome Sequence of Streptococcus pneumoniae Virulent Phage MS1. Genome Announcements, 2017, 5, .	0.8	10
179	Frequent Amplification of a Short Chain Dehydrogenase Gene in Methotrexate Resistant Leishmania. Advances in Experimental Medicine and Biology, 1993, 338, 559-562.	0.8	10
180	Identification of Resistance Determinants for a Promising Antileishmanial Oxaborole Series. Microorganisms, 2021, 9, 1408.	1.6	8

#	Article	IF	CITATIONS
181	Involvement of Dcr1 in post-transcriptional regulation of gene expression in Schizosaccharomyces pombe. Frontiers in Bioscience - Landmark, 2008, 13, 2203.	3.0	8
182	Drug Resistance in Leishmania. , 2017, , 313-341.		7
183	Combined gene deletion of dihydrofolate reductase-thymidylate synthase and pteridine reductase in Leishmania infantum. PLoS Neglected Tropical Diseases, 2021, 15, e0009377.	1.3	7
184	Drug Resistance Assays for Parasitic Diseases. , 2017, , 1409-1463.		7
185	Cos-Seq: A High-Throughput Gain-of-Function Screen for Drug Resistance Studies in Leishmania. Methods in Molecular Biology, 2019, 1971, 141-167.	0.4	6
186	Gain- and Loss-of-Function Screens Coupled to Next-Generation Sequencing for Antibiotic Mode of Action and Resistance Studies in <i>Streptococcus pneumoniae</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	6
187	Chemogenomic Screen for Imipenem Resistance in Gram-Negative Bacteria. MSystems, 2019, 4, .	1.7	6
188	Coupling next-generation sequencing to dominant positive screens for finding antibiotic cellular targets and resistance mechanisms in Escherichia coli. Microbial Genomics, 2018, 4, .	1.0	6
189	New insights in the mode of action of anti-leishmanial drugs by using chemical mutagenesis screens coupled to next-generation sequencing. Microbial Cell, 2020, 7, 59-61.	1.4	6
190	Drug resistance in parasites. , 2003, , 397-432.		5
191	New insights with miltefosine unresponsiveness in Brazilian Leishmania infantum isolates. EBioMedicine, 2018, 37, 13-14.	2.7	5
192	DRUG RESISTANCE MEDIATED BY ABC TRANSPORTERS IN PARASITES OF HUMANS. , 2003, , 317-333.		4
193	Drug Resistance in Leishmania. , 2014, , 1-24.		4
194	Exploiting antimicrobial resistance. EMBO Reports, 2020, 21, e50249.	2.0	4
195	Inactivation of the cytosolic and mitochondrial serine hydroxymethyl transferase genes in Leishmania major. Molecular and Biochemical Parasitology, 2015, 204, 106-110.	0.5	3
196	Well-Tolerated Amphotericin B Derivatives That Effectively Treat Visceral Leishmaniasis. ACS Infectious Diseases, 2021, 7, 2472-2482.	1.8	3
197	Azithromycin resistance mutations in Streptococcus pneumoniae as revealed by a chemogenomic screen. Microbial Genomics, 2020, 6, .	1.0	3
198	Decreased glutamate transport in acivicin resistant Leishmania tarentolae. PLoS Neglected Tropical Diseases, 2021, 15, e0010046.	1.3	3

#	Article	IF	CITATIONS
199	Separation of Basic Proteins from Leishmania Using a Combination of Free Flow Electrophoresis (FFE) and 2D Electrophoresis (2-DE) Under Basic Conditions. Methods in Molecular Biology, 2015, 1201, 247-259.	0.4	2
200	Simvastatin Resistance of Leishmania amazonensis Induces Sterol Remodeling and Cross-Resistance to Sterol Pathway and Serine Protease Inhibitors. Microorganisms, 2022, 10, 398.	1.6	2
201	Recent Progress in Vaccine Development againstLeishmaniaSpecies Infections. Canadian Journal of Infectious Diseases & Medical Microbiology, 1999, 10, 9C-15C.	0.3	1
202	ATP-binding cassette transporters: from multidrug resistance to genetic disease, Gosau, Austria, 20–27 February 1999. Drug Resistance Updates, 1999, 2, 130-133.	6.5	1
203	Proteomics to Explore Pathogenesis and Drug Resistance Mechanisms in Protozoan Parasites. , 2004, , 367-390.		1
204	Use of phylogenetical analysis to predict susceptibility of pathogenic Candida spp. to antifungal drugs. Journal of Microbiological Methods, 2016, 131, 51-60.	0.7	1
205	Control of surface antigen genes in African trypanosomes. Biochemical Society Transactions, 1990, 18, 741-742.	1.6	0
206	Next Generation Vaccine Biomarkers workshop October 30–31, 2014 – Ottawa, Canada. Human Vaccines and Immunotherapeutics, 2015, 11, 2923-2930.	1.4	0
207	The Canadian Institutes of Health Research institute of infection and immunity response to the threat of antimicrobial resistance. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2011, 30, 663-664.	0.6	0
208	Nondegradable Antimicrobial Silver-Based Perovskite. ACS Sustainable Chemistry and Engineering, 2022, 10, 4922-4928.	3.2	0