Liisa Nissinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5622962/publications.pdf Version: 2024-02-01

LUSA NISSINEN

#	Article	IF	CITATIONS
1	C1r Upregulates Production of Matrix Metalloproteinase-13 and Promotes Invasion of Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2022, 142, 1478-1488.e9.	0.3	19
2	Complement Factor D Is a Novel Biomarker and Putative Therapeutic Target in Cutaneous Squamous Cell Carcinoma. Cancers, 2022, 14, 305.	1.7	8
3	Identification of metastatic primary cutaneous squamous cell carcinoma utilizing artificial intelligence analysis of whole slide images. Scientific Reports, 2022, 12, .	1.6	11
4	Matrix metalloproteinases in keratinocyte carcinomas. Experimental Dermatology, 2021, 30, 50-61.	1.4	23
5	The Viability and Growth of HaCaT Cells After Exposure to Bioactive Glass S53P4-Containing Cell Culture Media. Otology and Neurotology, 2021, 42, e559-e567.	0.7	7
6	Complement factor I upregulates expression of matrix metalloproteinase $\hat{a}\in 13$ and $\hat{a}\in 2$ and promotes invasion of cutaneous squamous carcinoma cells. Experimental Dermatology, 2021, 30, 1631-1641.	1.4	8
7	The Role of p53 in Progression of Cutaneous Squamous Cell Carcinoma. Cancers, 2021, 13, 4507.	1.7	28
8	Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player. Molecular Biology Reports, 2021, 48, 1243-1254.	1.0	11
9	H-Ras activation and fibroblast-induced TGF-β signaling promote laminin-332 accumulation and invasion in cutaneous squamous cell carcinoma. Matrix Biology, 2020, 87, 26-47.	1.5	23
10	p53-Regulated Long Noncoding RNA PRECSIT Promotes Progression of Cutaneous Squamous Cell Carcinoma via STAT3 Signaling. American Journal of Pathology, 2020, 190, 503-517.	1.9	33
11	Long non-coding RNAs in cutaneous biologyÂand keratinocyte carcinomas. Cellular and Molecular Life Sciences, 2020, 77, 4601-4614.	2.4	12
12	Risk Factors and Prognosis for Metastatic Cutaneous Squamous Cell Carcinoma: A Cohort Study. Acta Dermato-Venereologica, 2020, 100, adv00266.	0.6	23
13	Complement System in Cutaneous Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2019, 20, 3550.	1.8	26
14	Long non-coding RNA PICSAR decreases adhesion and promotes migration of squamous carcinoma cells by downregulating $\hat{I}\pm2\hat{I}^21$ and $\hat{I}\pm5\hat{I}^21$ integrin expression. Biology Open, 2018, 7, .	0.6	31
15	Expression of claudinâ€11 by tumor cells in cutaneous squamous cell carcinoma is dependent on the activity of p38l´. Experimental Dermatology, 2017, 26, 771-777.	1.4	12
16	Complement Component C3 and Complement Factor B Promote Growth of Cutaneous Squamous Cell Carcinoma. American Journal of Pathology, 2017, 187, 1186-1197.	1.9	63
17	Dasatinib promotes apoptosis of cutaneous squamous carcinoma cells by regulating activation of ERK1/2. Experimental Dermatology, 2017, 26, 89-92.	1.4	20
18	Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget, 2017, 8, 45825-45836.	0.8	59

LIISA NISSINEN

#	Article	IF	CITATIONS
19	Long Noncoding RNA PICSAR Promotes Growth of Cutaneous Squamous Cell Carcinoma by Regulating ERK1/2 Activity. Journal of Investigative Dermatology, 2016, 136, 1701-1710.	0.3	61
20	MicroRNA-203 Inversely Correlates with Differentiation Grade, Targets c-MYC, and Functions as a Tumor Suppressor in cSCC. Journal of Investigative Dermatology, 2016, 136, 2485-2494.	0.3	39
21	New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell and Tissue Research, 2016, 365, 691-702.	1.5	60
22	Platelet response to a small molecule inhibitor of α2β1 integrin is associated with <i>ITGA2</i> C807T dimorphism. Platelets, 2016, 27, 378-380.	1.1	2
23	Sulfonamide inhibitors of <i>α</i> 2 <i>β</i> 1 integrin reveal the essential role of collagen receptors in in vivo models of inflammation. Pharmacology Research and Perspectives, 2015, 3, e00146.	1.1	9
24	EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2015, 135, 1882-1892.	0.3	48
25	Complement Factor I Promotes Progression of Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2015, 135, 579-588.	0.3	68
26	p38δ mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Archives of Dermatological Research, 2014, 306, 131-141.	1.1	18
27	Matrix metalloproteinases in inflammation. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2571-2580.	1.1	344
28	Calpains promote α2β1 integrin turnover in nonrecycling integrin pathway. Molecular Biology of the Cell, 2012, 23, 448-463.	0.9	23
29	Heparin-like Polysaccharides Reduce Osteolytic Bone Destruction and Tumor Growth in a Mouse Model of Breast Cancer Bone Metastasis. Molecular Cancer Research, 2012, 10, 597-604.	1.5	35
30	Novel α2β1 Integrin Inhibitors Reveal That Integrin Binding to Collagen under Shear Stress Conditions Does Not Require Receptor Preactivation. Journal of Biological Chemistry, 2012, 287, 44694-44702.	1.6	37
31	ADAMTS5. American Journal of Pathology, 2012, 181, 743-745.	1.9	8
32	Fluorescent Small Molecule Probe to Modulate and Explore α2β1 Integrin Function. Journal of the American Chemical Society, 2011, 133, 14558-14561.	6.6	15
33	Blockage of collagen binding to integrin α2β1: structure–activity relationship of protein–protein interaction inhibitors. MedChemComm, 2011, 2, 764.	3.5	6
34	A small-molecule inhibitor of integrin α2β1 introduces a new strategy for antithrombotic therapy. Thrombosis and Haemostasis, 2010, 103, 387-397.	1.8	40
35	Molecular mechanism of $\hat{I}\pm2\hat{I}^21$ integrin interaction with human echovirus 1. EMBO Journal, 2010, 29, 196-208.	3.5	83
36	Calpain 1 and 2 Are Required for RNA Replication of Echovirus 1. Journal of Virology, 2008, 82, 1581-1590.	1.5	41

LIISA NISSINEN

#	Article	IF	CITATIONS
37	O-Sulfated Bacterial Polysaccharides with Low Anticoagulant Activity Inhibit Metastasis. Seminars in Thrombosis and Hemostasis, 2007, 33, 547-556.	1.5	30
38	Small Molecule Designed to Target Metal Binding Site in the α21 Domain Inhibits Integrin Function. Journal of Medicinal Chemistry, 2007, 50, 2742-2746.	2.9	24
39	Regulation of prostate cell collagen receptors by malignant transformation. International Journal of Cancer, 2006, 118, 889-898.	2.3	28
40	The Fibril-associated Collagen IX Provides a Novel Mechanism for Cell Adhesion to Cartilaginous Matrix. Journal of Biological Chemistry, 2004, 279, 51677-51687.	1.6	65
41	Internalization of Echovirus 1 in Caveolae. Journal of Virology, 2002, 76, 1856-1865.	1.5	219
42	Integrin α2β1 Promotes Activation of Protein Phosphatase 2A and Dephosphorylation of Akt and Glycogen Synthase Kinase 3β. Molecular and Cellular Biology, 2002, 22, 1352-1359.	1.1	164
43	Expression of α7β1 Integrin Splicing Variants during Skeletal Muscle Regeneration. American Journal of Pathology, 2002, 161, 1023-1031.	1.9	38
44	Selective Binding of Collagen Subtypes by Integrin α11, α21, and α101 Domains. Journal of Biological Chemistry, 2001, 276, 48206-48212.	1.6	221
45	Integrin and dystrophin associated adhesion protein complexes during regeneration of shearing-type muscle injury. Neuromuscular Disorders, 2000, 10, 121-132.	0.3	45
46	Depletion of αV integrins from osteosarcoma cells by intracellular antibody expression induces bone differentiation marker genes and suppresses gelatinase (MMP-2) synthesis. Matrix Biology, 1999, 18, 239-251.	1.5	25
47	Echovirus 1 Infection Induces both Stress- and Growth-Activated Mitogen-Activated Protein Kinase Pathways and Regulates the Transcription of Cellular Immediate-Early Genes. Virology, 1998, 250, 85-93.	1.1	45
48	Transcription of α2 Integrin Gene in Osteosarcoma Cells Is Enhanced by Tumor Promoters. Experimental Cell Research, 1998, 243, 1-10.	1.2	20
49	Bone Morphogenetic Protein-2 Is a Regulator of Cell Adhesion. Experimental Cell Research, 1997, 230, 377-385.	1.2	49
50	The genome of echovirus 11. Virus Research, 1995, 35, 215-222.	1.1	50