List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5622869/publications.pdf Version: 2024-02-01

DENC DENC

#	Article	IF	CITATIONS
1	A 1.78ÂGa large igneous province in the North China craton: The Xiong'er Volcanic Province and the North China dyke swarm. Lithos, 2008, 101, 260-280.	1.4	346
2	Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 2005, 47, 492-508.	2.1	286
3	UHT sapphirine granulite metamorphism at 1.93–1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 2012, 222-223, 124-142.	2.7	259
4	U–Pb baddeleyite ages, distribution and geochemistry of 925Ma mafic dykes and 900Ma sills in the North China craton: Evidence for a Neoproterozoic mantle plume. Lithos, 2011, 127, 210-221.	1.4	212
5	Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust–mantle interaction. Precambrian Research, 2010, 183, 635-659.	2.7	203
6	Spatial distribution of ~1950–1800Ma metamorphic events in the North China Craton: Implications for tectonic subdivision of the craton. Lithos, 2014, 202-203, 250-266.	1.4	189
7	Late Paleoproterozoic–Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review. Tectonophysics, 2015, 662, 153-166.	2.2	181
8	Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78ÂGa mafic dykes in the central North China craton. Gondwana Research, 2007, 12, 29-46.	6.0	176
9	Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China Earth Sciences, 2015, 58, 649-675.	5.2	165
10	Neoproterozoic (~900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 2011, 20, 243-254.	6.0	153
11	Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nature Communications, 2014, 5, 5604.	12.8	132
12	Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics. Lithos, 2012, 148, 27-44.	1.4	124
13	Linking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, 2007, 12, 388-403.	6.0	114
14	Ca. 2.5 billion year old coeval ultramafic–mafic and syenitic dykes in Eastern Hebei: Implications for cratonization of the North China Craton. Precambrian Research, 2010, 180, 143-155.	2.7	112
15	Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction. Precambrian Research, 2011, 187, 165-180.	2.7	111
16	Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: Implications for ridge subduction. Precambrian Research, 2012, 222-223, 107-123.	2.7	109
17	Zircon U–Pb ages and geochemistry of the Huai'an TTG gneisses terrane: Petrogenesis and implications for â^1⁄42.5 Ga crustal growth in the North China Craton. Precambrian Research, 2012, 212-213, 225-244.	2.7	104
18	Mesoproterozoic magmatic events in the eastern North China Craton and their tectonic implications: Geochronological evidence from detrital zircons in the Shandong Peninsula and North Korea. Gondwana Research, 2012, 22, 828-842.	6.0	103

#	Article	IF	CITATIONS
19	Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 2013, 237, 78-100.	2.7	103
20	Precambrian key tectonic events and evolution of the North China craton. Geological Society Special Publication, 2010, 338, 235-262.	1.3	98
21	A late Archean tectonic mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 2013, 608, 929-946.	2.2	91
22	Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng System. Science Bulletin, 2012, 57, 105-110.	1.7	86
23	Geology of a Neoarchean suture: Evidence from the Zunhua ophiolitic mélange of the Eastern Hebei Province, North China Craton. Bulletin of the Geological Society of America, 2019, 131, 1943-1964.	3.3	83
24	Qingyuan high-grade granite–greenstone terrain in the Eastern North China Craton: Root of a Neoarchaean arc. Tectonophysics, 2015, 662, 7-21.	2.2	82
25	Detrital zircon U–Pb dating and whole-rock geochemistry from the clastic rocks in the northern marginal basin of the North China Craton: Constraints on depositional age and provenance of the Bayan Obo Group. Precambrian Research, 2015, 258, 133-145.	2.7	81
26	Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean craton: an example from North Korea. Geological Magazine, 2008, 145, 637-647.	1.5	79
27	â^1⁄42.7-Ga Crustal Growth in the North China Craton: Evidence from Zircon U-Pb Ages and Hf Isotopes of the Sushui Complex in the Zhongtiao Terrane. Journal of Geology, 2013, 121, 239-254.	1.4	77
28	Petrogenesis of the 2115 Ma Haicheng mafic sills from the Eastern North China Craton: Implications for an intra-continental rifting. Gondwana Research, 2016, 39, 347-364.	6.0	76
29	Geochronology, mantle source composition and geodynamic constraints on the origin of Neoarchean mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton. Lithos, 2014, 205, 359-378.	1.4	73
30	Anatomy of zircon growth in high pressure granulites: SIMS U–Pb geochronology and Lu–Hf isotopes from the Jiaobei Terrane, eastern North China Craton. Gondwana Research, 2015, 28, 1373-1390.	6.0	72
31	Two linear granite belts in the central-western North China Craton and their implication for Late Neoarchaean-Palaeoproterozoic continental evolution. Precambrian Research, 2003, 127, 267-283.	2.7	71
32	Mélanges through time: Life cycle of the world's largest Archean mélange compared with Mesozoic and Paleozoic subduction-accretion-collision mélanges. Earth-Science Reviews, 2020, 209, 103303.	9.1	68
33	Neoproterozoic tectonic evolution of the Hongseong area, southwestern Gyeonggi Massif, South Korea; implication for the tectonic evolution of Northeast Asia. Gondwana Research, 2009, 16, 272-284.	6.0	67
34	A 2.5 Ga fore-arc subduction-accretion complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 2016, 275, 241-264.	2.7	65
35	Geochemistry of Neoarchean mafic volcanic rocks and late mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Implications for geodynamic setting. Lithos, 2013, 175-176, 193-212.	1.4	64
36	The role of megacontinents in the supercontinent cycle. Geology, 2021, 49, 402-406.	4.4	64

#	Article	IF	CITATIONS
37	Zircon U–Pb ages and geochemistry of the Qinglong volcano-sedimentary rock series in Eastern Hebei: Implication for â^¼2500Ma intra-continental rifting in the North China Craton. Precambrian Research, 2012, 208-211, 145-160.	2.7	61
38	Paleo-position of the North China craton within the supercontinent Columbia: Constraints from new paleomagnetic results. Precambrian Research, 2014, 255, 276-293.	2.7	61
39	Short-lived high-temperature prograde and retrograde metamorphism in Shaerqin sapphirine-bearing metapelites from the Daqingshan terrane, North China Craton. Precambrian Research, 2015, 269, 31-57.	2.7	61
40	Nature of three episodes of Paleoproterozoic magmatism (2180 Ma, 2115 Ma and 1890 Ma) in the Liaoji belt, North China with implications for tectonic evolution. Precambrian Research, 2017, 298, 252-267.	2.7	58
41	Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia. Gondwana Research, 2003, 6, 171-183.	6.0	57
42	U-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton: Tectonic matches with the North China Craton and paleogeographic inferences. Precambrian Research, 2017, 293, 91-111.	2.7	56
43	Reconstruction and interpretation of giant mafic dyke swarms: a case study of 1.78 Ga magmatism in the North China craton. Geological Society Special Publication, 2010, 338, 163-178.	1.3	55
44	Trend of China land water storage redistribution at medi- and large-spatial scales in recent five years by satellite gravity observations. Science Bulletin, 2009, 54, 816-821.	9.0	53
45	A Neoarchean subduction polarity reversal event in the North China Craton. Lithos, 2015, 220-223, 133-146.	1.4	53
46	The geology of North Korea: An overview. Earth-Science Reviews, 2019, 194, 57-96.	9.1	53
47	Lithological units at the boundary zone between the Jining and Huai'an Complexes (central-northern) Tj ETQq1	1 0.78431 1.4	4 rgBT /Over
48	Renewed profile of the Mesozoic magmatism in Korean Peninsula: Regional correlation and broader implication for cratonic destruction in the North China Craton. Science China Earth Sciences, 2016, 59, 2355-2388.	5.2	46
49	Structural relationships along a Neoarchean arc-continent collision zone, North China craton. Bulletin of the Geological Society of America, 2017, 129, 59-75.	3.3	45
50	Nature of 1800–1600Ma mafic dyke swarms in the North China Craton: Implications for the rejuvenation of the sub-continental lithospheric mantle. Precambrian Research, 2015, 257, 114-123.	2.7	44
51	Nature of three Proterozoic (1680 Ma, 1230 Ma and 775 Ma) mafic dyke swarms in North China: Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 2016, 285, 109-126.	2.7	41
52	Origin of early continents and beginning of plate tectonics. Science Bulletin, 2020, 65, 970-973.	9.0	41
53	Zircon U–Pb geochronology and Hf isotopic composition of the Hongqiyingzi Complex, northern Hebei Province: New evidence for Paleoproterozoic and late Paleozoic evolution of the northern margin of the North China Craton. Gondwana Research, 2011, 20, 122-136.	6.0	39
54	Plate tectonics before 2.0 Ga: Evidence from paleomagnetism of cratons within supercontinent Nuna. Numerische Mathematik, 2014, 314, 878-894.	1.4	39

#	Article	IF	CITATIONS
55	Petrogenesis of ca. 1.95 Ga meta-leucogranites from the Jining Complex in the Khondalite Belt, North China Craton: Water-fluxed melting of metasedimentary rocks. Precambrian Research, 2017, 303, 355-371.	2.7	39
56	High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos, 2018, 320-321, 435-453.	1.4	36
57	Provenance analysis of the late Mesoproterozoic to Neoproterozoic Xuhuai Basin in the southeast North China Craton: Implications for paleogeographic reconstruction. Precambrian Research, 2020, 337, 105554.	2.7	36
58	U–Pb zircon age dating of a rapakivi granite batholith in Rangnim massif, North Korea. Geological Magazine, 2007, 144, 547-552.	1.5	35
59	Petrogenesis and geochemistry of circa 2.5 Ga granitoids in the Zanhuang Massif: Implications for magmatic source and Neoarchean metamorphism of the North China Craton. Lithos, 2017, 268-271, 149-162.	1.4	34
60	Petrogenesis of the 2090 Ma Zanhuang ring and sill complexes in North China: A bimodal magmatism related to intra-continental process. Precambrian Research, 2017, 303, 153-170.	2.7	33
61	Magmatic record of Neoarchean arc-polarity reversal from the Dengfeng segment of the Central Orogenic Belt, North China Craton. Precambrian Research, 2019, 326, 105-123.	2.7	32
62	Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: Implications for genesis of the bimodal Xiong'er volcanic province. Lithos, 2015, 236-237, 106-122.	1.4	30
63	P–T–t constraints of the Barrovian-type metamorphic series in the Khondalite belt of the North China Craton: Evidence from phase equilibria modeling and zircon U–Pb geochronology. Precambrian Research, 2016, 283, 125-143.	2.7	27
64	Magnetic fabrics and rock magnetism of the Xiong'er volcanic rocks and their implications for tectonic correlation of the North China Craton with other crustal blocks in the Nuna/Columbia supercontinent. Tectonophysics, 2017, 712-713, 415-425.	2.2	24
65	From subduction initiation to arc–polarity reversal: Life cycle of an Archean subduction zone from the Zunhua ophiolitic mélange, North China Craton. Precambrian Research, 2020, 350, 105868.	2.7	23
66	Long-lived connection between the North China and North Australian cratons in supercontinent Nuna: paleomagnetic and geological constraints. Science Bulletin, 2019, 64, 873-876.	9.0	21
67	Genetic relationship between 1780 Ma dykes and coeval volcanics in the Lvliang area, North China. Precambrian Research, 2019, 329, 232-246.	2.7	21
68	Tungsten isotopic constraints on homogenization of the Archean silicate Earth: Implications for the transition of tectonic regimes. Geochimica Et Cosmochimica Acta, 2020, 278, 51-64.	3.9	21
69	Dating the Gaofan and Hutuo Groups – Targets to investigate the Paleoproterozoic Great Oxidation Event in North China. Journal of Asian Earth Sciences, 2017, 138, 535-547.	2.3	20
70	Nature of charnockite and Closepet granite in the Dharwar Craton: Implications for the architecture of the Archean crust. Precambrian Research, 2019, 334, 105478.	2.7	19
71	The Devonian back-arc basin and Triassic arc-continent collision along the Imjingang belt in the Korean Peninsula and their tectonic meaning. Lithos, 2019, 328-329, 276-296.	1.4	19
72	Age and genesis of the Neoarchean Algoma-type banded iron formations from the Dengfeng greenstone belt, southern North China Craton: Geochronological, geochemical and Sm–Nd isotopic constraints. Precambrian Research, 2019, 333, 105437.	2.7	18

#	Article	IF	CITATIONS
73	Identification of the Neoarchean Jianping pyroxenite-mélange in the Central Orogenic Belt, North China Craton: A fore-arc accretional assemblage. Precambrian Research, 2020, 336, 105495.	2.7	18
74	Earth's oldest hotspot track at ca. 1.8 Ga advected by a global subduction system. Earth and Planetary Science Letters, 2022, 585, 117530.	4.4	17
75	Origin and geological significance of the 1.81 Ga hyalophane-rich pegmatite veins from the high-pressure granulite terrain in the Central Zone of North China Craton. Science China Earth Sciences, 2012, 55, 193-203.	5.2	15
76	A Neoarchean arc-backarc pair in the Linshan Massif, southern North China Craton. Precambrian Research, 2020, 341, 105649.	2.7	15
77	The 1.24–1.21ÂGa Licheng Large Igneous Province in the North China Craton: Implications for Paleogeographic Reconstruction. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019005.	3.4	15
78	Earth's oneâ€ofâ€aâ€kind fault: The Tanlu fault. Terra Nova, 2022, 34, 381-394.	2.1	15
79	In situ U-Pb zircon dating of Devonian sandstones and Paleoproterozoic gneissic granites in the Imjingang Belt: Tectonic implications for the Korean Peninsula and North China. Lithos, 2018, 316-317, 232-242.	1.4	14
80	Late Paleoproterozoic–Neoproterozoic (1800–541ÂMa) Mafic Dyke Swarms and Rifts in North China. Springer Geology, 2015, , 171-204.	0.3	13
81	Late Paleoproterozoic tectono-thermal event in the northwestern North China Craton: Evidence from U-Pb dating and O-Hf isotopic compositions of zircons from metasedimentary rocks north of Hohhot City, Inner Mongolia, northern China. Journal of Asian Earth Sciences, 2018, 167, 152-164.	2.3	13
82	Oldest-known Neoproterozoic carbon isotope excursion: Earlier onset of Neoproterozoic carbon cycle volatility. Gondwana Research, 2021, 94, 1-11.	6.0	13
83	Comments to "Paleoproterozoic meta-carbonates from the Central segment of the Trans-North China Orogen: Zircon U-Pb geochronology, geochemistry, and carbon and oxygen isotopes―by Tang et al., 2016, Precambrian Research 284: 14–29. Precambrian Research, 2017, 294, 344-349.	2.7	11
84	Petrogenesis of a ~900†Ma mafic sill from Xuzhou, North China: Implications for the genesis of Fe-Ti-rich rocks. Lithos, 2018, 318-319, 357-375.	1.4	11
85	Neoarchean to Paleoproterozoic tectonothermal evolution of the North China Craton: Constraints from geological mapping and Th-U-Pb geochronology of zircon, titanite and monazite in Zanhuang Massif. Precambrian Research, 2021, 359, 106214.	2.7	11
86	Zircon U–Pb geochronology and geochemistry of low-grade metamorphosed volcanic rocks from the Dantazi Complex: Implications for the evolution of the North China Craton. Journal of Asian Earth Sciences, 2015, 111, 948-965.	2.3	10
87	Distribution pattern of age and geochemistry of 2.18–2.14ÂGa I- and A-type granites and their implication for the tectonics of the Liao-Ji belt in the North China Craton. Lithos, 2020, 364-365, 105518.	1.4	10
88	Initiation of continental breakup documented in evolution of the magma plumbing system of the ca. 925ÂMa Dashigou large igneous province, North China. Lithos, 2021, 384-385, 105984.	1.4	10
89	Review on geological evolution of the Pyongnam basin in Korean Peninsula. Acta Petrologica Sinica, 2021, 37, 129-142.	0.8	10
90	Multi-stage evolution of the Xuhuai rift: Insights from the occurrence and compositional profiles of doleritic sills in the southeastern margin of the North China Craton. Gondwana Research, 2020, 82, 221-240.	6.0	9

#	Article	IF	CITATIONS
91	1:2500 000 Map of Precambrian Dyke Swarms and Related Units in North China. Acta Geologica Sinica, 2016, 90, 16-16.	1.4	8
92	Magma flow pattern of the 1.78ÂGa dyke swarm of the North China Craton during the initial assembly of the Supercontinent Nuna/Columbia: Constraints from rock magnetic and anisotropy of magnetic susceptibility studies. Precambrian Research, 2020, 345, 105773.	2.7	8
93	Neoarchean seafloor hydrothermal metamorphism of basalts in the Zanhuang ophiolitic mélange, North China Craton. Precambrian Research, 2020, 347, 105832.	2.7	8
94	Reappraising the Provenance of Early Neoproterozoic Strata in the Southern–Southeastern North China Craton and Its Implication for Paleogeographic Reconstruction. Minerals (Basel, Switzerland), 2022, 12, 510.	2.0	8
95	Paleoproterozoic Granulites in the North China Craton and Their Geological Implications. Springer Geology, 2015, , 137-169.	0.3	7
96	Cryogenian accretion of the Northern Arabian-Nubian shield: Integrated evidence from central Eastern Desert Egypt. Precambrian Research, 2022, 371, 106599.	2.7	5
97	Dyke swarms: keys to paleogeographic reconstructions. Science Bulletin, 2016, 61, 1669-1671.	9.0	4
98	Boundary-Included Enhanced Water Storage Changes Inferred by GPS in the Pacific Rim of the Western United States. Remote Sensing, 2020, 12, 2429.	4.0	4
99	Petrogenesis of Paleoproterozoic Liangcheng garnet granitoids in the Khondalite Belt, North China Craton. Acta Petrologica Sinica, 2021, 37, 375-390.	0.8	4
100	In situ zircon U Pb dating of Jurassic granitoids in North Korea and its tectonic implications. Lithos, 2021, 398-399, 106346.	1.4	4
101	Petrogenesis of ~2.1†Ga mafic and granitic magmatism and tectonic implication of Jiaobei Terrane in North China Craton. Lithos, 2020, 378-379, 105806.	1.4	4
102	A new 1.32ÂCa Tianshui mafic sill in the Liaodong area and its relations to the Yanliao large igneous province in the northern North China Craton. Precambrian Research, 2022, 369, 106535.	2.7	4
103	Ice Mass Variation in Antarctica from GRACE Over 2002–2011. Marine Geodesy, 2016, 39, 178-194.	2.0	3
104	A brief review of the Precambrian geology of the northern Korean Peninsula. Journal of the Geological Society of Korea, 2021, 57, 437-466.	0.7	3
105	Spatiotemporal evolution of large igneous provinces and their related rifts in the North China craton: role in craton breakup and destruction. Geological Society Special Publication, 2022, 518, 129-147.	1.3	3
106	Genetic Relationship of the 1780–1760 Ma Dykes and the Coeval Volcanics in the Lvliang Area, North China. Acta Geologica Sinica, 2016, 90, 133-134.	1.4	2
107	Whole-rock and mineral chemical data from a profile of the ~900 Ma Niutishan Fe-Ti-rich sill in XuZhou, North China. Data in Brief, 2018, 21, 727-735.	1.0	2
108	Reviews on the Paleozoic-Mesozoic granitoids and sedimentary rocks in North Korea. Journal of the Geological Society of Korea, 2021, 57, 523-544.	0.7	2

#	Article	IF	CITATIONS
109	Nature of Three Episodes of Magmatism (2181 Ma, 2115 Ma and 1891 Ma) in the Liaohe Rift of North China: Implications for Tectonic Evolution. Acta Geologica Sinica, 2016, 90, 127-127.	1.4	1
110	Late Paleoproterozoic-Neoproterozoic Multi-rifting Events Accompanied by Four Stages of Magmatism in the North China Craton and Their Geological Significance. Acta Geologica Sinica, 2016, 90, 48-48.	1.4	1
111	Comments on "Paleoproterozoic arc-continent collision in the North China Craton: Evidence from the Zanhuang Complex―by Li et al. (2016), Precambrian Research 286: 281–305. Precambrian Research, 2018, 304, 171-173.	2.7	1
112	Paleoproterozoic Orosirian tectono-thermal events in the Nangrim Massif, North Korea: Cratonic and supercontinental connection. Lithos, 2021, 384-385, 105983.	1.4	1
113	Petrogenesis and geological significance of the Paleoproterozoic Dushikou metagabbro-diorite in northern Hebei Province. Acta Petrologica Sinica, 2021, 37, 269-283.	0.8	1
114	Casting a vote for shifting the Statherian: Petrogenesis of 1.70 and 1.62ÂGa mafic dykes in the North China Craton. Lithos, 2022, 414-415, 106631.	1.4	1
115	Keel of the eastern North China craton weakened by Proterozoic large igneous provinces. International Geology Review, 2023, 65, 669-681.	2.1	1
116	Tectonic Environments of the Yanâ€Liao Rift during Earth's Middle Age (1.7â^¼0.75 Ga): Evidence from Mafic Dyke Swarms in Eastern Hebei, North China. Acta Geologica Sinica, 2016, 90, 45-46.	1.4	0
117	Structural Architecture and Spatial-Temporal Distribution of the Archean Domains in the Eastern North China Craton. Springer Geology, 2016, , 45-64.	0.3	0
118	Dyke Swarms: Keys to Paleogeographic Reconstructions, Preface for IDC7 2016. Acta Geologica Sinica, 2016, 90, XII-XIV.	1.4	0
119	Petrogenesis of the~2115 Ma Haicheng Mafic Sills in the Eastern North China Craton and Their Implications for An Intra-Continental Rifting. Acta Geologica Sinica, 2016, 90, 128-128.	1.4	0
120	Magnetic Fabric Studies of Xiong'er Volcanic Rocks in Southern Margin of the North China Craton and its Implications. Acta Geologica Sinica, 2016, 90, 167-167.	1.4	0
121	Large‣cale Segregation of Immiscible Liquids in the 1780 Ma Taihang Dykes to Produce the Bimodal Xiong'er Volcanics (North China). Acta Geologica Sinica, 2016, 90, 113-113.	1.4	0
122	In-situ chemistry of plagioclase and amphibole phenocrysts of Mt. Lamington volcano in Papua New Guinea: Evidence for influence of Woodlark spreading ridge to Papuan arc. Lithos, 2021, 396-397, 106242.	1.4	0